找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Lectures in Quantum Mechanics; A Two-Term Course Luigi E. Picasso Textbook 2016 Springer International Publishing Switzerland 2016 Angular

[復制鏈接]
樓主: architect
51#
發(fā)表于 2025-3-30 08:24:56 | 只看該作者
52#
發(fā)表于 2025-3-30 13:54:28 | 只看該作者
The Harmonic Oscillator,ergy for a one-dimensional oscillator. In this section we shall limit ourselves to obtain only some qualitative conditions on the energy levels of the oscillator, mainly with the purpose of giving to the reader the occasion to get acquainted with some techniques and concepts of quantum mechanics.
53#
發(fā)表于 2025-3-30 20:21:45 | 只看該作者
54#
發(fā)表于 2025-3-30 20:59:15 | 只看該作者
55#
發(fā)表于 2025-3-31 03:24:28 | 只看該作者
56#
發(fā)表于 2025-3-31 07:59:01 | 只看該作者
From Einstein to de Broglie,According to classical physics, the energy associated with a monochromatic electromagnetic wave is proportional to its intensity; the intensity can have any value above zero, and can therefore be varied with continuity. Furthermore this energy is distributed in space in a continuous way.
57#
發(fā)表于 2025-3-31 13:12:32 | 只看該作者
Representation Theory,Let ∣..〉, .?=?1, 2, … be an orthonormal basis of vectors.
58#
發(fā)表于 2025-3-31 16:27:08 | 只看該作者
,Schr?dinger Equation for One-Dimensional Systems,In this section we will be concerned with the relatively simple problem of determining the eigenvalues of the Hamiltonian of the free particle. We will discuss the one-dimensional case. Our system consists therefore of a particle constrained to move on a straight line.
59#
發(fā)表于 2025-3-31 18:51:45 | 只看該作者
One-Dimensional Systems,In Chap. . we have found the eigenvalues and the eigenvectors of the Hamiltonian of the one-dimensional harmonic oscillator. We want now to find the eigenfunctions .(.) = <. | .> of the Hamiltonian in the Schr?dinger representation.
60#
發(fā)表于 2025-4-1 00:42:08 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-12 12:22
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
伊金霍洛旗| 年辖:市辖区| 梁山县| 清水县| 横峰县| 丹阳市| 湘潭县| 湟中县| 犍为县| 安新县| 略阳县| 鄢陵县| 额济纳旗| 广西| 崇信县| 吉安县| 行唐县| 桂林市| 青河县| 平果县| 赫章县| 柳林县| 合江县| 霞浦县| 萨嘎县| 吐鲁番市| 佳木斯市| 南郑县| 小金县| 合江县| 潜江市| 秭归县| 黄冈市| 萝北县| 资源县| 从化市| 屏山县| 分宜县| 英山县| 桦甸市| 内黄县|