找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Lectures in Abstract Algebra; II. Linear Algebra Nathan Jacobson Textbook 1953 The Editor(s) (if applicable) and The Author(s) 1953 Calcula

[復(fù)制鏈接]
樓主: 法官所用
21#
發(fā)表于 2025-3-25 07:24:38 | 只看該作者
The Theory of a Single Linear Transformation,paces into so-called cyclic subspaces relative to a given linear transformation. By choosing appropriate bases in these spaces we obtain certain canonical matrices for the transformation. These results yield necessary and sufficient conditions for similarity of matrices. Following Krull we shall der
22#
發(fā)表于 2025-3-25 11:13:48 | 只看該作者
Sets of Linear Transformations,y of these notions belongs more properly to the so-called theory of representations of rings and is beyond the scope of the present volume. An introduction to these notions will serve to put into better perspective the results of the preceding chapter. We shall also be able to extend some of these r
23#
發(fā)表于 2025-3-25 12:13:42 | 只看該作者
Bilinear Forms, vector space R and. is in a right vector space R′. The values of .(.,.) are assumed to belong to Δ, and the functions of one variable ..(.) = .(.,.) and ..(.) = .(.,.) obtained by fixing the other variable are linear. Of particular interest are the non-degenerate bilinear forms. These determine 1–1
24#
發(fā)表于 2025-3-25 18:37:38 | 只看該作者
25#
發(fā)表于 2025-3-25 20:55:06 | 只看該作者
26#
發(fā)表于 2025-3-26 00:41:21 | 只看該作者
27#
發(fā)表于 2025-3-26 07:11:31 | 只看該作者
978-1-4684-7055-0The Editor(s) (if applicable) and The Author(s) 1953
28#
發(fā)表于 2025-3-26 10:49:44 | 只看該作者
29#
發(fā)表于 2025-3-26 14:25:24 | 只看該作者
Graduate Texts in Mathematicshttp://image.papertrans.cn/l/image/583440.jpg
30#
發(fā)表于 2025-3-26 18:50:06 | 只看該作者
Linear Transformations,elation between linear transformations and matrices is discussed. Also we define rank and nullity for arbitrary linear transformations. Finally we study a special type of linear transformation called a projection, and we establish a connection between transformations of this type and direct decompositions of the vector space.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 17:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
泸定县| 利川市| 张北县| 涿州市| 勐海县| 板桥市| 博爱县| 安远县| 灵武市| 高雄县| 天全县| 陆丰市| 马公市| 醴陵市| 宁都县| 酒泉市| 防城港市| 文登市| 乌拉特后旗| 分宜县| 苏州市| 正定县| 凤凰县| 迁西县| 鄢陵县| 巴南区| 宜兰市| 西贡区| 钟祥市| 凯里市| 巴楚县| 台南县| 阿瓦提县| 丰镇市| 辉南县| 桦甸市| 肥西县| 汶上县| 宁河县| 油尖旺区| 堆龙德庆县|