找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Lectures in Abstract Algebra; II. Linear Algebra Nathan Jacobson Textbook 1953 The Editor(s) (if applicable) and The Author(s) 1953 Calcula

[復(fù)制鏈接]
樓主: 法官所用
21#
發(fā)表于 2025-3-25 07:24:38 | 只看該作者
The Theory of a Single Linear Transformation,paces into so-called cyclic subspaces relative to a given linear transformation. By choosing appropriate bases in these spaces we obtain certain canonical matrices for the transformation. These results yield necessary and sufficient conditions for similarity of matrices. Following Krull we shall der
22#
發(fā)表于 2025-3-25 11:13:48 | 只看該作者
Sets of Linear Transformations,y of these notions belongs more properly to the so-called theory of representations of rings and is beyond the scope of the present volume. An introduction to these notions will serve to put into better perspective the results of the preceding chapter. We shall also be able to extend some of these r
23#
發(fā)表于 2025-3-25 12:13:42 | 只看該作者
Bilinear Forms, vector space R and. is in a right vector space R′. The values of .(.,.) are assumed to belong to Δ, and the functions of one variable ..(.) = .(.,.) and ..(.) = .(.,.) obtained by fixing the other variable are linear. Of particular interest are the non-degenerate bilinear forms. These determine 1–1
24#
發(fā)表于 2025-3-25 18:37:38 | 只看該作者
25#
發(fā)表于 2025-3-25 20:55:06 | 只看該作者
26#
發(fā)表于 2025-3-26 00:41:21 | 只看該作者
27#
發(fā)表于 2025-3-26 07:11:31 | 只看該作者
978-1-4684-7055-0The Editor(s) (if applicable) and The Author(s) 1953
28#
發(fā)表于 2025-3-26 10:49:44 | 只看該作者
29#
發(fā)表于 2025-3-26 14:25:24 | 只看該作者
Graduate Texts in Mathematicshttp://image.papertrans.cn/l/image/583440.jpg
30#
發(fā)表于 2025-3-26 18:50:06 | 只看該作者
Linear Transformations,elation between linear transformations and matrices is discussed. Also we define rank and nullity for arbitrary linear transformations. Finally we study a special type of linear transformation called a projection, and we establish a connection between transformations of this type and direct decompositions of the vector space.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 19:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
江华| 保定市| 云林县| 濮阳县| 绥宁县| 大港区| 高安市| 双峰县| 正镶白旗| 禹城市| 舞阳县| 开封县| 清徐县| 扎囊县| 大连市| 乐平市| 郸城县| 固安县| 理塘县| 景东| 新龙县| 泌阳县| 正安县| 许昌县| 施秉县| 东光县| 南雄市| 河东区| 博爱县| 平塘县| 怀安县| 乐至县| 贺兰县| 昌黎县| 监利县| 来安县| 广丰县| 来凤县| 宁安市| 安西县| 海原县|