找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Lectures and Surveys on G2-Manifolds and Related Topics; Spiro Karigiannis,Naichung Conan Leung,Jason D. Lo Book 2020 Springer Science+Bus

[復(fù)制鏈接]
樓主: 開脫
31#
發(fā)表于 2025-3-26 21:20:35 | 只看該作者
32#
發(fā)表于 2025-3-27 04:22:40 | 只看該作者
Constructions of Compact ,-Holonomy Manifoldssolutions of singularities of appropriately chosen 7-dimensional orbifolds, with the help of asymptotically locally Euclidean spaces. Another method uses the gluing of two asymptotically cylindrical pieces and requires a certain matching condition for their cross-sections ‘a(chǎn)t infinity’.
33#
發(fā)表于 2025-3-27 05:22:15 | 只看該作者
34#
發(fā)表于 2025-3-27 10:56:23 | 只看該作者
Fr?licher–Nijenhuis Bracket on Manifolds with Special Holonomybles us to define the Fr?licher–Nijenhuis cohomologies which are analogues of the . and the Dolbeault cohomologies in K?hler geometry, and assigns an .-algebra to each associative submanifold. We provide several concrete computations of the Fr?licher–Nijenhuis cohomology.
35#
發(fā)表于 2025-3-27 17:25:25 | 只看該作者
36#
發(fā)表于 2025-3-27 19:11:20 | 只看該作者
37#
發(fā)表于 2025-3-27 23:56:27 | 只看該作者
Deformations of Calibrated Submanifolds with Boundaryalibrated submanifolds are assumed compact with a non-empty boundary which is constrained to move in a particular fixed submanifold. The results extend McLean’s deformation theory previously developed for closed compact submanifolds.
38#
發(fā)表于 2025-3-28 04:09:03 | 只看該作者
39#
發(fā)表于 2025-3-28 09:55:51 | 只看該作者
Lectures and Surveys on G2-Manifolds and Related Topics978-1-0716-0577-6Series ISSN 1069-5265 Series E-ISSN 2194-1564
40#
發(fā)表于 2025-3-28 11:14:51 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 18:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
莱阳市| 时尚| 鄂州市| 泌阳县| 台中县| 南召县| 巴青县| 长汀县| 溆浦县| 仙桃市| 宜都市| 蕲春县| 安徽省| 繁峙县| 海兴县| 开鲁县| 清河县| 横山县| 勐海县| 鄂州市| 宁武县| 陆丰市| 北辰区| 简阳市| 青州市| 南皮县| 鹤山市| 邯郸市| 遂川县| 孝义市| 自贡市| 二连浩特市| 青州市| 化州市| 凤庆县| 临漳县| 绥滨县| 望城县| 温泉县| 曲周县| 黔南|