找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Lecture Notes on the Theory of Plates and Shells; Classical and Modern David J. Steigmann,Mircea B?rsan,Milad Shirani Textbook 2023 The Edi

[復(fù)制鏈接]
樓主: 精明
11#
發(fā)表于 2025-3-23 11:02:27 | 只看該作者
Textbook 2023d the various ad hoc assumptions made in the historical development of the subject, most notably the classical Kirchhoff–Love hypothesis requiring that material lines initially normal to the shell surface remain so after deformation. Instead, suchconditions, when appropriate, are here derived rather than postulated.?.
12#
發(fā)表于 2025-3-23 15:36:41 | 只看該作者
13#
發(fā)表于 2025-3-23 19:06:15 | 只看該作者
,Local Geometry of?Deformation,In this chapter, we describe the deformation of continua and define the strain and stress tensors. Then, we review the main results of the differential geometry of surfaces in the Euclidean space.
14#
發(fā)表于 2025-3-23 22:24:53 | 只看該作者
Linear Shell Theory,In this chapter the dimension reduction procedure is extended to curved shells, again in the context of linear elasticity. The resulting model is used to obtain some simple solutions to problems of practical interest.
15#
發(fā)表于 2025-3-24 02:20:50 | 只看該作者
16#
發(fā)表于 2025-3-24 10:16:10 | 只看該作者
https://doi.org/10.1007/978-3-031-25674-5Linearly elastic shells; Theory of plates; Thin plates and shells; Nonlinear shell models; Derivation of
17#
發(fā)表于 2025-3-24 11:05:32 | 只看該作者
978-3-031-25676-9The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
18#
發(fā)表于 2025-3-24 16:09:51 | 只看該作者
19#
發(fā)表于 2025-3-24 22:21:31 | 只看該作者
Hyperelastic Solids: Purely Mechanical Theory,elasticity in a curvilinear-coordinate setting. This furnishes an immediate application of these ideas to a topic of mechanical significance and sets the stage for our subsequent work on elastic shells.
20#
發(fā)表于 2025-3-25 00:28:04 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 02:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
丰县| 通山县| 福州市| 肥城市| 涞水县| 松阳县| 孟村| 榆社县| 台湾省| 乌苏市| 梁平县| 永仁县| 肇源县| 津南区| 纳雍县| 商城县| 吉林省| 巴彦淖尔市| 察雅县| 柳江县| 高尔夫| 保山市| 扬中市| 大方县| 武定县| 肇东市| 蓬安县| 吉林省| 增城市| 资中县| 广平县| 兖州市| 夏河县| 固阳县| 咸宁市| 唐山市| 南丰县| 垫江县| 荥经县| 华宁县| 江津市|