找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Lecture Notes on Geometry of Numbers; R. J. Hans-Gill,Madhu Raka,Ranjeet Sehmi Textbook 2024 The Editor(s) (if applicable) and The Author(

[復制鏈接]
樓主: 請回避
11#
發(fā)表于 2025-3-23 10:35:04 | 只看該作者
Packings, discrete set and introduce the concepts of general packing density, and lattice packing density of a set in .. We shall prove some results on packing of spheres and convex bodies and give some historical remarks on packings.
12#
發(fā)表于 2025-3-23 17:21:42 | 只看該作者
Homogeneous Problems, binary quadratic forms. We define Markoff spectrum for absolute value of indefinite binary quadratic forms and determine first three minima. We also consider one-sided problem for indefinite binary quadratic forms and show that here the spectrum is not isolated. Homogeneous minimum of product of three linear forms is also obtained.
13#
發(fā)表于 2025-3-23 19:21:01 | 只看該作者
https://doi.org/10.1007/978-981-99-9602-5lattices; convex sets; Minkowski fundamental theorem; critical determinants; Minkowski second inequality
14#
發(fā)表于 2025-3-24 01:53:04 | 只看該作者
15#
發(fā)表于 2025-3-24 04:43:18 | 只看該作者
16#
發(fā)表于 2025-3-24 06:44:40 | 只看該作者
Coverings,The concept of covering is dual to that of packing. In this chapter, we shall define lattice covering, general covering, covering density, thinnest covering density, and their arithmetical interpretation. We prove F.ry’s result for obtaining best lattice covering density of closed convex domains in . and give some historical remarks on coverings.
17#
發(fā)表于 2025-3-24 13:31:07 | 只看該作者
18#
發(fā)表于 2025-3-24 16:44:59 | 只看該作者
19#
發(fā)表于 2025-3-24 19:09:35 | 只看該作者
20#
發(fā)表于 2025-3-25 02:41:18 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 08:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
时尚| 建昌县| 依兰县| 满洲里市| 黎城县| 甘谷县| 涿鹿县| 易门县| 尚志市| 景宁| 淅川县| 尉氏县| 二手房| 二连浩特市| 香格里拉县| 黄平县| 漳浦县| 安化县| 同仁县| 山阴县| 博罗县| 白水县| 宁国市| 田林县| 侯马市| 龙井市| 凌云县| 无极县| 文成县| 阳西县| 双流县| 陆良县| 汉沽区| 大宁县| 吴桥县| 镇巴县| 壤塘县| 民乐县| 黑水县| 武冈市| 祁东县|