找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Lecture Notes on Diophantine Analysis; Umberto Zannier Textbook 2014 Edizioni della Normale 2014 Bell equation.Thue‘s theorem.diophantine

[復(fù)制鏈接]
樓主: intensify
11#
發(fā)表于 2025-3-23 11:38:52 | 只看該作者
Lecture Notes on Diophantine Analysis978-88-7642-517-2Series ISSN 2239-1460 Series E-ISSN 2532-1668
12#
發(fā)表于 2025-3-23 14:46:11 | 只看該作者
13#
發(fā)表于 2025-3-23 21:01:27 | 只看該作者
Publications of the Scuola Normale Superiorehttp://image.papertrans.cn/l/image/583419.jpg
14#
發(fā)表于 2025-3-24 00:26:17 | 只看該作者
15#
發(fā)表于 2025-3-24 05:26:35 | 只看該作者
16#
發(fā)表于 2025-3-24 07:39:35 | 只看該作者
,Thue’s equations and rational approximations, shall also present the main points of this argument. Finally, in the ‘Supplements’ we shall present some applications to the finiteness of integral points on other curves, a short proof of a theorem of Runge and a brief discussion of a function-field Thue Equation.
17#
發(fā)表于 2025-3-24 12:19:52 | 只看該作者
Some classical diophantine examples,e approximation, a theory which provides most important tools, that we shall meet throughout. After Pell Equation we shall give a complete effective treatment of the integral points for general conics, . quadratic equations in two variables to be solved in ?..
18#
發(fā)表于 2025-3-24 16:49:41 | 只看該作者
The ,-unit equation,his book; thirdly, the results on ‘small’ solutions obtained through Zhang’s theorem, given in detail in the last chapter, also allow good and uniform estimates. The output will be an excellent quantitative bound for the number of solutions, depending remarkably only on the rank of the relevant group of .-units.
19#
發(fā)表于 2025-3-24 19:00:11 | 只看該作者
20#
發(fā)表于 2025-3-25 01:33:35 | 只看該作者
Textbook 2014sic mathematical material and are accessible to many undergraduates. The contents mainly concern diophantine problems on affine curves, in practice describing the integer solutions of equations in two variables. This case historically suggested some major ideas for more general problems. Starting wi
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 04:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
武平县| 酉阳| 远安县| 寿光市| 博爱县| 龙岩市| 会理县| 金门县| 松原市| 武强县| 卢龙县| 吉林省| 民乐县| 墨竹工卡县| 宁化县| 新余市| 秦皇岛市| 佛教| 新蔡县| 正镶白旗| 阿拉善盟| 上蔡县| 贺兰县| 广元市| 贵溪市| 登封市| 平昌县| 霍山县| 富蕴县| 阳山县| 年辖:市辖区| 康马县| 朝阳县| 汕尾市| 宁河县| 株洲市| 思茅市| 黔西| 博兴县| 富民县| 曲靖市|