找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Lecture Notes on Diophantine Analysis; Umberto Zannier Textbook 2014 Edizioni della Normale 2014 Bell equation.Thue‘s theorem.diophantine

[復(fù)制鏈接]
樓主: intensify
11#
發(fā)表于 2025-3-23 11:38:52 | 只看該作者
Lecture Notes on Diophantine Analysis978-88-7642-517-2Series ISSN 2239-1460 Series E-ISSN 2532-1668
12#
發(fā)表于 2025-3-23 14:46:11 | 只看該作者
13#
發(fā)表于 2025-3-23 21:01:27 | 只看該作者
Publications of the Scuola Normale Superiorehttp://image.papertrans.cn/l/image/583419.jpg
14#
發(fā)表于 2025-3-24 00:26:17 | 只看該作者
15#
發(fā)表于 2025-3-24 05:26:35 | 只看該作者
16#
發(fā)表于 2025-3-24 07:39:35 | 只看該作者
,Thue’s equations and rational approximations, shall also present the main points of this argument. Finally, in the ‘Supplements’ we shall present some applications to the finiteness of integral points on other curves, a short proof of a theorem of Runge and a brief discussion of a function-field Thue Equation.
17#
發(fā)表于 2025-3-24 12:19:52 | 只看該作者
Some classical diophantine examples,e approximation, a theory which provides most important tools, that we shall meet throughout. After Pell Equation we shall give a complete effective treatment of the integral points for general conics, . quadratic equations in two variables to be solved in ?..
18#
發(fā)表于 2025-3-24 16:49:41 | 只看該作者
The ,-unit equation,his book; thirdly, the results on ‘small’ solutions obtained through Zhang’s theorem, given in detail in the last chapter, also allow good and uniform estimates. The output will be an excellent quantitative bound for the number of solutions, depending remarkably only on the rank of the relevant group of .-units.
19#
發(fā)表于 2025-3-24 19:00:11 | 只看該作者
20#
發(fā)表于 2025-3-25 01:33:35 | 只看該作者
Textbook 2014sic mathematical material and are accessible to many undergraduates. The contents mainly concern diophantine problems on affine curves, in practice describing the integer solutions of equations in two variables. This case historically suggested some major ideas for more general problems. Starting wi
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 04:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
和政县| 米易县| 新巴尔虎右旗| 新津县| 拜城县| 吴桥县| 十堰市| 米易县| 兰西县| 左云县| 武清区| 偃师市| 博乐市| 九江市| 阳高县| 遵化市| 电白县| 武川县| 灵石县| 乾安县| 平顶山市| 阿鲁科尔沁旗| 石屏县| 利津县| 靖西县| 万源市| 花莲市| 都兰县| 东港市| 汾西县| 类乌齐县| 达日县| 宜君县| 敦化市| 扶余县| 秦安县| 增城市| 正阳县| 社会| 长岭县| 安仁县|