找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Least Absolute Deviations; Theory, Applications Peter Bloomfield,William L. Steiger Book 1983 Springer Science+Business Media New York 1983

[復(fù)制鏈接]
樓主: 搭話
31#
發(fā)表于 2025-3-26 21:44:51 | 只看該作者
32#
發(fā)表于 2025-3-27 03:13:22 | 只看該作者
33#
發(fā)表于 2025-3-27 07:19:47 | 只看該作者
34#
發(fā)表于 2025-3-27 11:51:04 | 只看該作者
35#
發(fā)表于 2025-3-27 16:35:46 | 只看該作者
LAD Spline Fitting,hoenberg (1964). Several authors have pursued these ideas [e.g. Reinsch (1967, 1971); Wahba (1976); Utreras (1981b)]. The use of splines to be described in this chapter is closely related to the robust splines described by Huber (1979). Utreras (1981a) has discussed a similar problem, also using the
36#
發(fā)表于 2025-3-27 18:00:42 | 只看該作者
LAD and Linear Programming,n vectors . ∈ R., . ∈ R. and an m by n matrix A. The vector c determines a linear functional f(.) = <.,.> on R. and A and b determine m linear inequalities A. ≤ .. The LP problem in standard form is to
37#
發(fā)表于 2025-3-27 23:20:17 | 只看該作者
38#
發(fā)表于 2025-3-28 05:49:09 | 只看該作者
LAD Spline Fitting,ed in this chapter is closely related to the robust splines described by Huber (1979). Utreras (1981a) has discussed a similar problem, also using the term “robust splines”, though somewhat inappropriately for statisticians, since his work is centered around the use of the discrete L. norm.
39#
發(fā)表于 2025-3-28 06:55:07 | 只看該作者
40#
發(fā)表于 2025-3-28 14:23:04 | 只看該作者
Book 1983ast absolute deviations (LAD) seems to have been considered first. Possibly the LAD criterion was forced into the background because of the com- putational difficulties associated with it. Recently there has been a resurgence of interest in LAD. It was spurred on by work that has resulted in efficie
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 07:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
珲春市| 扬州市| 屯留县| 依兰县| 铜川市| 新田县| 长岭县| 连州市| 加查县| 虎林市| 桐庐县| 建宁县| 克什克腾旗| 叶城县| 拜泉县| 三都| 玛多县| 潮州市| 深州市| 拉孜县| 泰顺县| 渝北区| 安义县| 时尚| 清丰县| 丰镇市| 平昌县| 延吉市| 海丰县| 泾川县| 阿勒泰市| 凌源市| 陆丰市| 福泉市| 东辽县| 元氏县| 祁门县| 北安市| 任丘市| 富平县| 武川县|