找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Learning with Recurrent Neural Networks; Barbara Hammer Book 2000 Springer-Verlag London 2000 Approximate capability.Folding networks.Lear

[復(fù)制鏈接]
查看: 9496|回復(fù): 35
樓主
發(fā)表于 2025-3-21 16:07:23 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Learning with Recurrent Neural Networks
編輯Barbara Hammer
視頻videohttp://file.papertrans.cn/584/583032/583032.mp4
概述The book details a new approach which enables neural networks to deal with symbolic data, folding networks.It presents both practical applications and a precise theoretical foundation
叢書名稱Lecture Notes in Control and Information Sciences
圖書封面Titlebook: Learning with Recurrent Neural Networks;  Barbara Hammer Book 2000 Springer-Verlag London 2000 Approximate capability.Folding networks.Lear
描述Folding networks, a generalisation of recurrent neural networks to tree structured inputs, are investigated as a mechanism to learn regularities on classical symbolic data, for example. The architecture, the training mechanism, and several applications in different areas are explained. Afterwards a theoretical foundation, proving that the approach is appropriate as a learning mechanism in principle, is presented: Their universal approximation ability is investigated- including several new results for standard recurrent neural networks such as explicit bounds on the required number of neurons and the super Turing capability of sigmoidal recurrent networks. The information theoretical learnability is examined - including several contribution to distribution dependent learnability, an answer to an open question posed by Vidyasagar, and a generalisation of the recent luckiness framework to function classes. Finally, the complexity of training is considered - including new results on the loading problem for standard feedforward networks with an arbitrary multilayered architecture, a correlated number of neurons and training set size, a varying number of hidden neurons but fixed input di
出版日期Book 2000
關(guān)鍵詞Approximate capability; Folding networks; Learnability; artificial intelligence; artificial neural netwo
版次1
doihttps://doi.org/10.1007/BFb0110016
isbn_softcover978-1-85233-343-0
isbn_ebook978-1-84628-567-7Series ISSN 0170-8643 Series E-ISSN 1610-7411
issn_series 0170-8643
copyrightSpringer-Verlag London 2000
The information of publication is updating

書目名稱Learning with Recurrent Neural Networks影響因子(影響力)




書目名稱Learning with Recurrent Neural Networks影響因子(影響力)學(xué)科排名




書目名稱Learning with Recurrent Neural Networks網(wǎng)絡(luò)公開度




書目名稱Learning with Recurrent Neural Networks網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Learning with Recurrent Neural Networks被引頻次




書目名稱Learning with Recurrent Neural Networks被引頻次學(xué)科排名




書目名稱Learning with Recurrent Neural Networks年度引用




書目名稱Learning with Recurrent Neural Networks年度引用學(xué)科排名




書目名稱Learning with Recurrent Neural Networks讀者反饋




書目名稱Learning with Recurrent Neural Networks讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:05:39 | 只看該作者
Lecture Notes in Control and Information Scienceshttp://image.papertrans.cn/l/image/583032.jpg
板凳
發(fā)表于 2025-3-22 01:39:46 | 只看該作者
地板
發(fā)表于 2025-3-22 04:40:39 | 只看該作者
Learning with Recurrent Neural Networks978-1-84628-567-7Series ISSN 0170-8643 Series E-ISSN 1610-7411
5#
發(fā)表于 2025-3-22 11:44:22 | 只看該作者
6#
發(fā)表于 2025-3-22 13:28:45 | 只看該作者
7#
發(fā)表于 2025-3-22 18:19:54 | 只看該作者
8#
發(fā)表于 2025-3-22 23:29:11 | 只看該作者
9#
發(fā)表于 2025-3-23 04:25:46 | 只看該作者
10#
發(fā)表于 2025-3-23 08:53:20 | 只看該作者
Barbara Hammermittelfristigen Auswirkungen dieser Ver?nderungen auf Mitarbeiter und Führungskr?fte dar..Die Stiftung der Schweizerischen Gesellschaft für Organisation und Management SGO sowie die Hochschule für Soziale Arbeit der Fachhochschule Nordwestschweiz unterstützten diesen Tagungsband..978-3-658-18786-6Series ISSN 2626-0581 Series E-ISSN 2626-059X
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 20:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
邹城市| 河源市| 二连浩特市| 潜山县| 盐津县| 喀喇沁旗| 错那县| 宁晋县| 宁化县| 夹江县| 岑溪市| 高安市| 崇义县| 福建省| 江华| 临夏市| 奎屯市| 塔城市| 孟津县| 济宁市| 壤塘县| 慈利县| 柳河县| 萨迦县| 樟树市| 泸西县| 介休市| 昌邑市| 双柏县| 锡林郭勒盟| 万荣县| 福州市| 华容县| 察雅县| 连云港市| 镇平县| 定结县| 独山县| 梁河县| 岗巴县| 瓮安县|