找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Learning with Partially Labeled and Interdependent Data; Massih-Reza Amini,Nicolas Usunier Book 2015 Springer International Publishing Swi

[復(fù)制鏈接]
查看: 48077|回復(fù): 35
樓主
發(fā)表于 2025-3-21 19:56:25 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Learning with Partially Labeled and Interdependent Data
編輯Massih-Reza Amini,Nicolas Usunier
視頻videohttp://file.papertrans.cn/584/583026/583026.mp4
概述Presents an overview of statistical learning theory.Analyzes two machine learning frameworks, semi-supervised learning with partially labeled data and learning with interdependent data.Outlines how th
圖書(shū)封面Titlebook: Learning with Partially Labeled and Interdependent Data;  Massih-Reza Amini,Nicolas Usunier Book 2015 Springer International Publishing Swi
描述.This book develops two key machine learning principles: the semi-supervised paradigm and learning with interdependent data. It reveals new applications, primarily web related, that transgress the classical machine learning framework through learning with interdependent data. .The book traces how the semi-supervised paradigm and the learning to rank paradigm emerged from new web applications, leading to a massive production of heterogeneous textual data. It explains how semi-supervised learning techniques are widely used, but only allow a limited analysis of the information content and thus do not meet the demands of many web-related tasks..Later chapters deal with the development of learning methods for ranking entities in a large collection with respect to precise information needed. In some cases, learning a ranking function can be reduced to learning a classification function over the pairs of examples. The book proves that this task can be efficiently tackled in a new framework: learning with interdependent data..Researchers and professionals in machine learning will find these new perspectives and solutions valuable. Learning with Partially Labeled and Interdependent Data is
出版日期Book 2015
關(guān)鍵詞learning to rank; learning with interdependent data; learning with partially labeled data; machine lear
版次1
doihttps://doi.org/10.1007/978-3-319-15726-9
isbn_softcover978-3-319-35390-6
isbn_ebook978-3-319-15726-9
copyrightSpringer International Publishing Switzerland 2015
The information of publication is updating

書(shū)目名稱Learning with Partially Labeled and Interdependent Data影響因子(影響力)




書(shū)目名稱Learning with Partially Labeled and Interdependent Data影響因子(影響力)學(xué)科排名




書(shū)目名稱Learning with Partially Labeled and Interdependent Data網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Learning with Partially Labeled and Interdependent Data網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Learning with Partially Labeled and Interdependent Data被引頻次




書(shū)目名稱Learning with Partially Labeled and Interdependent Data被引頻次學(xué)科排名




書(shū)目名稱Learning with Partially Labeled and Interdependent Data年度引用




書(shū)目名稱Learning with Partially Labeled and Interdependent Data年度引用學(xué)科排名




書(shū)目名稱Learning with Partially Labeled and Interdependent Data讀者反饋




書(shū)目名稱Learning with Partially Labeled and Interdependent Data讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:12:37 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:13:28 | 只看該作者
Massih-Reza Amini,Nicolas UsunierPresents an overview of statistical learning theory.Analyzes two machine learning frameworks, semi-supervised learning with partially labeled data and learning with interdependent data.Outlines how th
地板
發(fā)表于 2025-3-22 05:05:26 | 只看該作者
http://image.papertrans.cn/l/image/583026.jpg
5#
發(fā)表于 2025-3-22 10:17:05 | 只看該作者
amework: learning with interdependent data..Researchers and professionals in machine learning will find these new perspectives and solutions valuable. Learning with Partially Labeled and Interdependent Data is 978-3-319-35390-6978-3-319-15726-9
6#
發(fā)表于 2025-3-22 15:30:25 | 只看該作者
Introduction to Learning Theory,e learning algorithm chooses the function having the lowest empirical error over a given training set. For each observation in the training set, the error function used to estimate the empirical error, quantifies the disagreement between the prediction output provided by the function, that is to be
7#
發(fā)表于 2025-3-22 20:59:49 | 只看該作者
8#
發(fā)表于 2025-3-22 23:06:27 | 只看該作者
9#
發(fā)表于 2025-3-23 02:52:42 | 只看該作者
Massih-Reza Amini,Nicolas Usunieration and identities. She thus highlights questions of the ‘encultured, affective, corporeal and located nature of musical experience’ (2010: 89). Similarly, in 2007 the composer/improvisor George Lewis made the argument for listening as a mode essentially linked to the body and thus deeply tied lis
10#
發(fā)表于 2025-3-23 08:04:50 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 17:35
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
专栏| 应城市| 富民县| 蓬溪县| 富平县| 雅安市| 手机| 宣恩县| 鄯善县| 白朗县| 准格尔旗| 阳江市| 广州市| 屏东县| 库车县| 黔西| 甘肃省| 定襄县| 葵青区| 托克逊县| 鹤庆县| 西充县| 辰溪县| 舞钢市| 塘沽区| 广河县| 长寿区| 石景山区| 甘洛县| 沛县| 乌兰察布市| 宝兴县| 建宁县| 岳普湖县| 攀枝花市| 永宁县| 嘉荫县| 上蔡县| 仪陇县| 凤山市| 岢岚县|