找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Learning to Rank for Information Retrieval; Tie-Yan Liu Book 20111st edition Springer-Verlag Berlin Heidelberg 2011 Information Retrieval.

[復(fù)制鏈接]
查看: 28255|回復(fù): 49
樓主
發(fā)表于 2025-3-21 17:02:34 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Learning to Rank for Information Retrieval
編輯Tie-Yan Liu
視頻videohttp://file.papertrans.cn/584/583009/583009.mp4
概述Only comprehensive overview of a key innovative technology for search engine development.Written by one of the leading authorities in this field.Combines scientific theoretical soundness with broad de
圖書封面Titlebook: Learning to Rank for Information Retrieval;  Tie-Yan Liu Book 20111st edition Springer-Verlag Berlin Heidelberg 2011 Information Retrieval.
描述.Due to the fast growth of the Web and the difficulties in finding desired information, efficient and effective information retrieval systems have become more important than ever, and the search engine has become an essential tool for many people...The ranker, a central component in every search engine, is responsible for the matching between processed queries and indexed documents. Because of its central role, great attention has been paid to the research and development of ranking technologies. In addition, ranking is also pivotal for many other information retrieval applications, such as collaborative filtering, definition ranking, question answering, multimedia retrieval, text summarization, and online advertisement. Leveraging machine learning technologies in the ranking process has led to innovative and more effective ranking models, and eventually to a completely new research area called “l(fā)earning to rank”...Liu first gives a comprehensive review of the major approaches to learning to rank. For each approach he presents the basic framework, with example algorithms, and he discusses its advantages and disadvantages. He continues with some recent advances in learning to rank t
出版日期Book 20111st edition
關(guān)鍵詞Information Retrieval; Machine Learning; Ranking Algorithms; Statistical Learning
版次1
doihttps://doi.org/10.1007/978-3-642-14267-3
isbn_softcover978-3-642-44124-0
isbn_ebook978-3-642-14267-3
copyrightSpringer-Verlag Berlin Heidelberg 2011
The information of publication is updating

書目名稱Learning to Rank for Information Retrieval影響因子(影響力)




書目名稱Learning to Rank for Information Retrieval影響因子(影響力)學(xué)科排名




書目名稱Learning to Rank for Information Retrieval網(wǎng)絡(luò)公開度




書目名稱Learning to Rank for Information Retrieval網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Learning to Rank for Information Retrieval被引頻次




書目名稱Learning to Rank for Information Retrieval被引頻次學(xué)科排名




書目名稱Learning to Rank for Information Retrieval年度引用




書目名稱Learning to Rank for Information Retrieval年度引用學(xué)科排名




書目名稱Learning to Rank for Information Retrieval讀者反饋




書目名稱Learning to Rank for Information Retrieval讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:14:58 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:12:26 | 只看該作者
地板
發(fā)表于 2025-3-22 05:16:47 | 只看該作者
Relational Rankingg process, but also considers the inter-relationship between documents. According to different relationships (e.g., similarity, preference, and dissimilarity), the task may correspond to different real applications (e.g., pseudo relevance feedback, topic distillation, and search result diversificati
5#
發(fā)表于 2025-3-22 08:52:42 | 只看該作者
Query-Dependent Ranking use a single ranking function to deal with all kinds of queries. Instead, one may achieve performance gain by leveraging the query differences. To consider the query difference in training, one can use a query-dependent loss function. To further consider the query difference in the test process, a
6#
發(fā)表于 2025-3-22 13:39:48 | 只看該作者
Semi-supervised Rankinge number of unlabeled documents or queries at a low cost. It would be very helpful if one can leverage such unlabeled data in the learning-to-rank process. In this chapter, we mainly review a transductive approach and an inductive approach to this task, and discuss how to improve these approaches by
7#
發(fā)表于 2025-3-22 18:19:22 | 只看該作者
8#
發(fā)表于 2025-3-22 22:46:55 | 只看該作者
9#
發(fā)表于 2025-3-23 01:31:48 | 只看該作者
Applications of Learning to Rankithm to solve a real ranking problem. In particular, we will take question answering, multimedia retrieval, text summarization, online advertising, etc. as examples, for illustration. One will see from these examples that the key step is to extract effective features for the objects to be ranked by
10#
發(fā)表于 2025-3-23 09:08:19 | 只看該作者
cts of identity and identity construction of learners, teachers, and practitioners of science.Reports on empirical studies and commentaries serve to extend theoretical understandings related to identity and identity development vis-à-vis science education, link them to empirical evidence derived fro
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 07:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
卢湾区| 彭州市| 铜鼓县| 吉安县| 墨脱县| 宜章县| 泉州市| 临沂市| 上蔡县| 明光市| 保定市| 黔东| 蒲城县| 民权县| 万山特区| 甘泉县| 丁青县| 赫章县| 长宁县| 谷城县| 大洼县| 察隅县| 西峡县| 阿图什市| 山东省| 吉木萨尔县| 公安县| 和顺县| 通道| 宁津县| 丁青县| 搜索| 南漳县| 尼木县| 山阴县| 五大连池市| 桦甸市| 来安县| 新乡县| 江津市| 余庆县|