找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Learning to Play; Reinforcement Learni Aske Plaat Textbook 2020 Springer Nature Switzerland AG 2020 Deep Learning.Machine Learning.Reinforc

[復(fù)制鏈接]
查看: 43876|回復(fù): 45
樓主
發(fā)表于 2025-3-21 17:38:04 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Learning to Play
副標(biāo)題Reinforcement Learni
編輯Aske Plaat
視頻videohttp://file.papertrans.cn/584/583005/583005.mp4
概述Author takes as inspiration breakthroughs in game playing, and using two-agent games to explain the full power of deep reinforcement learning.Suitable for advanced undergraduate and graduate courses i
圖書封面Titlebook: Learning to Play; Reinforcement Learni Aske Plaat Textbook 2020 Springer Nature Switzerland AG 2020 Deep Learning.Machine Learning.Reinforc
描述In this textbook the author takes as inspiration recent breakthroughs in game playing to explain how and why deep reinforcement learning works. In particular he shows why two-person games of tactics and strategy fascinate scientists, programmers, and game enthusiasts and unite them in a common goal: to create artificial intelligence (AI).?.After an introduction to the core concepts, environment, and communities of intelligence and games, the book is organized into chapters on reinforcement learning, heuristic planning, adaptive sampling, function approximation, and self-play. The author takes a hands-on approach throughout, with Python code examples and exercises that help the reader understand how AI learns to play. He also supports the main text with detailed pointers to online machine learning frameworks, technical details for AlphaGo, notes on how to play and program Go and chess, and a comprehensive bibliography..The content is class-tested and suitable for advanced undergraduate and graduate courses on artificial intelligence and games. It‘s also appropriate for self-study by professionals engaged with applications of machine learning and with games development. Finally it‘s
出版日期Textbook 2020
關(guān)鍵詞Deep Learning; Machine Learning; Reinforcement Learning; Artificial Intelligence; Computational Intellig
版次1
doihttps://doi.org/10.1007/978-3-030-59238-7
isbn_softcover978-3-030-59240-0
isbn_ebook978-3-030-59238-7
copyrightSpringer Nature Switzerland AG 2020
The information of publication is updating

書目名稱Learning to Play影響因子(影響力)




書目名稱Learning to Play影響因子(影響力)學(xué)科排名




書目名稱Learning to Play網(wǎng)絡(luò)公開度




書目名稱Learning to Play網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Learning to Play被引頻次




書目名稱Learning to Play被引頻次學(xué)科排名




書目名稱Learning to Play年度引用




書目名稱Learning to Play年度引用學(xué)科排名




書目名稱Learning to Play讀者反饋




書目名稱Learning to Play讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:21:22 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:13:39 | 只看該作者
地板
發(fā)表于 2025-3-22 08:23:20 | 只看該作者
Aske PlaatAuthor takes as inspiration breakthroughs in game playing, and using two-agent games to explain the full power of deep reinforcement learning.Suitable for advanced undergraduate and graduate courses i
5#
發(fā)表于 2025-3-22 09:46:15 | 只看該作者
http://image.papertrans.cn/l/image/583005.jpg
6#
發(fā)表于 2025-3-22 14:25:33 | 只看該作者
7#
發(fā)表于 2025-3-22 17:11:47 | 只看該作者
Reinforcement Learning,The field of reinforcement learning studies the behavior of agents that learn through interaction with their environment. Reinforcement learning is a general paradigm, with links to trial-and-error methods and behavioral conditioning studies. In this chapter we will introduce basic concepts and algorithms that will be used in the restof the book.
8#
發(fā)表于 2025-3-22 21:47:51 | 只看該作者
Heuristic Planning,Combinatorial games have been used in AI to study reasoning and decision making since the early days of AI. An important challenge in decision making is how tosearch large state spaces efficiently.
9#
發(fā)表于 2025-3-23 04:55:35 | 只看該作者
10#
發(fā)表于 2025-3-23 06:03:57 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 22:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
和顺县| 青州市| 香港| 天长市| 治县。| 沙田区| 鄂尔多斯市| 老河口市| 颍上县| 读书| 黎平县| 中卫市| 长垣县| 监利县| 汉寿县| 张家港市| 泾川县| 平江县| 太仓市| 阜城县| 抚州市| 南京市| 乌鲁木齐县| 桂阳县| 洛扎县| 庐江县| 偏关县| 远安县| 重庆市| 嘉善县| 密山市| 衡东县| 西盟| 韶山市| 延津县| 莱芜市| 会理县| 彝良县| 通海县| 遂宁市| 南漳县|