找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Learning to Classify Text Using Support Vector Machines; Thorsten Joachims Book 2002 Springer Science+Business Media New York 2002 Support

[復(fù)制鏈接]
查看: 13228|回復(fù): 45
樓主
發(fā)表于 2025-3-21 17:00:59 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Learning to Classify Text Using Support Vector Machines
編輯Thorsten Joachims
視頻videohttp://file.papertrans.cn/583/582991/582991.mp4
叢書名稱The Springer International Series in Engineering and Computer Science
圖書封面Titlebook: Learning to Classify Text Using Support Vector Machines;  Thorsten Joachims Book 2002 Springer Science+Business Media New York 2002 Support
描述.Based on ideas from Support Vector Machines (SVMs), .Learning To Classify Text Using Support Vector Machines. presents a new approach to generating text classifiers from examples. The approach combines high performance and efficiency with theoretical understanding and improved robustness. In particular, it is highly effective without greedy heuristic components. The SVM approach is computationally efficient in training and classification, and it comes with a learning theory that can guide real-world applications...Learning To Classify Text Using Support Vector Machines. gives a complete and detailed description of the SVM approach to learning text classifiers, including training algorithms, transductive text classification, efficient performance estimation, and a statistical learning model of text classification. In addition, it includes an overview of the field of text classification, making it self-contained even for newcomers to the field. This book gives a concise introduction to SVMs for pattern recognition, and it includes a detailed description of how to formulate text-classification tasks for machine learning..
出版日期Book 2002
關(guān)鍵詞Support Vector Machine; algorithms; classification; cognition; computer science; information; learning; lea
版次1
doihttps://doi.org/10.1007/978-1-4615-0907-3
isbn_softcover978-1-4613-5298-3
isbn_ebook978-1-4615-0907-3Series ISSN 0893-3405
issn_series 0893-3405
copyrightSpringer Science+Business Media New York 2002
The information of publication is updating

書目名稱Learning to Classify Text Using Support Vector Machines影響因子(影響力)




書目名稱Learning to Classify Text Using Support Vector Machines影響因子(影響力)學(xué)科排名




書目名稱Learning to Classify Text Using Support Vector Machines網(wǎng)絡(luò)公開度




書目名稱Learning to Classify Text Using Support Vector Machines網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Learning to Classify Text Using Support Vector Machines被引頻次




書目名稱Learning to Classify Text Using Support Vector Machines被引頻次學(xué)科排名




書目名稱Learning to Classify Text Using Support Vector Machines年度引用




書目名稱Learning to Classify Text Using Support Vector Machines年度引用學(xué)科排名




書目名稱Learning to Classify Text Using Support Vector Machines讀者反饋




書目名稱Learning to Classify Text Using Support Vector Machines讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:24:03 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:32:24 | 只看該作者
地板
發(fā)表于 2025-3-22 06:48:50 | 只看該作者
Thorsten Joachims of the data is that the entire operating region of the system is covered, i.e. no special calibration cycles are required. Two truck engine applications are evaluated, one where a 1-D air mass-flow sensor adaptation map is estimated, and one where a 2-D volumetric efficiency map is adapted, both du
5#
發(fā)表于 2025-3-22 12:11:30 | 只看該作者
Thorsten Joachims of the data is that the entire operating region of the system is covered, i.e. no special calibration cycles are required. Two truck engine applications are evaluated, one where a 1-D air mass-flow sensor adaptation map is estimated, and one where a 2-D volumetric efficiency map is adapted, both du
6#
發(fā)表于 2025-3-22 14:35:30 | 只看該作者
7#
發(fā)表于 2025-3-22 18:43:08 | 只看該作者
Thorsten Joachims of the data is that the entire operating region of the system is covered, i.e. no special calibration cycles are required. Two truck engine applications are evaluated, one where a 1-D air mass-flow sensor adaptation map is estimated, and one where a 2-D volumetric efficiency map is adapted, both du
8#
發(fā)表于 2025-3-23 00:23:11 | 只看該作者
Thorsten Joachimsl variables were available, or, from a Bayesian approach, if informative prior distrubutions for the parameters were used (see Johnston [1965, chap. 6] and Zellner [1971, chap. V]).. None of this prior information seemed very appealing to econometricians.
9#
發(fā)表于 2025-3-23 03:58:00 | 只看該作者
10#
發(fā)表于 2025-3-23 07:56:07 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 22:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
鹿邑县| 红原县| 琼海市| 东海县| 县级市| 兰州市| 罗江县| 泾阳县| 灵山县| 清苑县| 城市| 浦北县| 中卫市| 洛川县| 肥东县| 大庆市| 绥阳县| 阿克陶县| 阆中市| 莱阳市| 泾川县| 蚌埠市| 凤阳县| 申扎县| 海淀区| 邹城市| 琼结县| 新竹市| 阿拉善盟| 曲靖市| 肥城市| 息烽县| 邵阳市| 阿合奇县| 靖边县| 商水县| 治县。| 宁波市| 定安县| 枣阳市| 登封市|