找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Learning in the Age of Digital Reason; Petar Jandric Book 2017 SensePublishers-Rotterdam, The Netherlands 2017 Digital ephemera.Digital re

[復(fù)制鏈接]
樓主: 寓言
11#
發(fā)表于 2025-3-23 11:10:07 | 只看該作者
12#
發(fā)表于 2025-3-23 16:12:47 | 只看該作者
Petar Jandricthe minimal number of generators of modules and ideals. The notion of a module over a ring R is a generalization of that of a vector space over a field k. The axioms are identical. But whereas every vector space possesses a basis, a module need not always have one. Modules possessing a basis are cal
13#
發(fā)表于 2025-3-23 21:48:25 | 只看該作者
14#
發(fā)表于 2025-3-23 22:50:08 | 只看該作者
the minimal number of generators of modules and ideals. The notion of a module over a ring R is a generalization of that of a vector space over a field k. The axioms are identical. But whereas every vector space possesses a basis, a module need not always have one. Modules possessing a basis are cal
15#
發(fā)表于 2025-3-24 03:40:08 | 只看該作者
Petar Jandricted to the study of projective modules and the minimal number of generators of modules and ideals. The notion of a module over a ring R is a generalization of that of a vector space over a field k. The axioms are identical. But whereas every vector space possesses a basis, a module need not always h
16#
發(fā)表于 2025-3-24 09:31:48 | 只看該作者
Petar Jandricted to the study of projective modules and the minimal number of generators of modules and ideals. The notion of a module over a ring R is a generalization of that of a vector space over a field k. The axioms are identical. But whereas every vector space possesses a basis, a module need not always h
17#
發(fā)表于 2025-3-24 13:28:32 | 只看該作者
Petar Jandricthe minimal number of generators of modules and ideals. The notion of a module over a ring R is a generalization of that of a vector space over a field k. The axioms are identical. But whereas every vector space possesses a basis, a module need not always have one. Modules possessing a basis are cal
18#
發(fā)表于 2025-3-24 18:44:38 | 只看該作者
19#
發(fā)表于 2025-3-24 21:35:39 | 只看該作者
20#
發(fā)表于 2025-3-25 03:13:15 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 17:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阿拉尔市| 伊金霍洛旗| 德昌县| 普宁市| 沙坪坝区| 黑河市| 大新县| 宁明县| 丰城市| 肇州县| 航空| 江口县| 淮南市| 金昌市| 威远县| 正阳县| 宽城| 郎溪县| 榆社县| 苗栗县| 高雄市| 苍山县| 泰宁县| 梁山县| 崇义县| 昭苏县| 二手房| 广水市| 德惠市| 定日县| 成安县| 晋江市| 金川县| 杭州市| 龙陵县| 威信县| 灌云县| 安乡县| 太湖县| 水富县| 巴东县|