找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Learning in the Age of Digital Reason; Petar Jandric Book 2017 SensePublishers-Rotterdam, The Netherlands 2017 Digital ephemera.Digital re

[復(fù)制鏈接]
樓主: 寓言
11#
發(fā)表于 2025-3-23 11:10:07 | 只看該作者
12#
發(fā)表于 2025-3-23 16:12:47 | 只看該作者
Petar Jandricthe minimal number of generators of modules and ideals. The notion of a module over a ring R is a generalization of that of a vector space over a field k. The axioms are identical. But whereas every vector space possesses a basis, a module need not always have one. Modules possessing a basis are cal
13#
發(fā)表于 2025-3-23 21:48:25 | 只看該作者
14#
發(fā)表于 2025-3-23 22:50:08 | 只看該作者
the minimal number of generators of modules and ideals. The notion of a module over a ring R is a generalization of that of a vector space over a field k. The axioms are identical. But whereas every vector space possesses a basis, a module need not always have one. Modules possessing a basis are cal
15#
發(fā)表于 2025-3-24 03:40:08 | 只看該作者
Petar Jandricted to the study of projective modules and the minimal number of generators of modules and ideals. The notion of a module over a ring R is a generalization of that of a vector space over a field k. The axioms are identical. But whereas every vector space possesses a basis, a module need not always h
16#
發(fā)表于 2025-3-24 09:31:48 | 只看該作者
Petar Jandricted to the study of projective modules and the minimal number of generators of modules and ideals. The notion of a module over a ring R is a generalization of that of a vector space over a field k. The axioms are identical. But whereas every vector space possesses a basis, a module need not always h
17#
發(fā)表于 2025-3-24 13:28:32 | 只看該作者
Petar Jandricthe minimal number of generators of modules and ideals. The notion of a module over a ring R is a generalization of that of a vector space over a field k. The axioms are identical. But whereas every vector space possesses a basis, a module need not always have one. Modules possessing a basis are cal
18#
發(fā)表于 2025-3-24 18:44:38 | 只看該作者
19#
發(fā)表于 2025-3-24 21:35:39 | 只看該作者
20#
發(fā)表于 2025-3-25 03:13:15 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 17:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
莎车县| 黑龙江省| 无锡市| 突泉县| 湖北省| 黄陵县| 克山县| 西贡区| 肃南| 西乌| 武山县| 保定市| 顺义区| 宝兴县| 厦门市| 房山区| 苏尼特右旗| 巨鹿县| 砚山县| 库尔勒市| 新巴尔虎左旗| 清涧县| 大名县| 丰镇市| 高邮市| 南靖县| 宿州市| 巴彦淖尔市| 余江县| 佳木斯市| 盐山县| 东光县| 正定县| 盐山县| 信阳市| 密云县| 湖北省| 同仁县| 钦州市| 乡宁县| 内乡县|