找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Learning in the Absence of Training Data; Dalia Chakrabarty Book 2023 Springer Nature Switzerland AG 2023 Supervised Learning.Training Dat

[復(fù)制鏈接]
查看: 35453|回復(fù): 35
樓主
發(fā)表于 2025-3-21 16:20:57 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Learning in the Absence of Training Data
編輯Dalia Chakrabarty
視頻videohttp://file.papertrans.cn/583/582974/582974.mp4
概述Describes a new reliable forecasting technique that works by learning the evolution-driving function.Presents a way of comparing two disparately-long time series datasets via a distance between graphs
圖書封面Titlebook: Learning in the Absence of Training Data;  Dalia Chakrabarty Book 2023 Springer Nature Switzerland AG 2023 Supervised Learning.Training Dat
描述.This book introduces the concept of “bespoke learning”, a new mechanistic approach that makes it possible to generate values of an output variable at each designated value of an associated input variable. Here the output variable generally provides information about the system’s behaviour/structure, and the aim is to learn the input-output relationship, even though little to no information on the output is available, as in multiple real-world problems. Once the output values have been bespoke-learnt, the originally-absent training set of input-output pairs becomes available, so that (supervised) learning of the sought inter-variable relation is then possible. Three ways of undertaking such bespoke learning are offered: by tapping into system dynamics in generic dynamical systems, to learn the function that causes the system’s evolution; by comparing realisations of a random graph variable, given multivariate time series datasets of disparate temporal coverage; and by designing maximally information-availing likelihoods in static systems. These methodologies are applied to four different real-world problems: forecasting daily COVID-19 infection numbers; learning the gravitational m
出版日期Book 2023
關(guān)鍵詞Supervised Learning; Training Data; Prediction given Test Data; Bayesian methods; Choosing priors on unk
版次1
doihttps://doi.org/10.1007/978-3-031-31011-9
isbn_softcover978-3-031-31013-3
isbn_ebook978-3-031-31011-9
copyrightSpringer Nature Switzerland AG 2023
The information of publication is updating

書目名稱Learning in the Absence of Training Data影響因子(影響力)




書目名稱Learning in the Absence of Training Data影響因子(影響力)學(xué)科排名




書目名稱Learning in the Absence of Training Data網(wǎng)絡(luò)公開度




書目名稱Learning in the Absence of Training Data網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Learning in the Absence of Training Data被引頻次




書目名稱Learning in the Absence of Training Data被引頻次學(xué)科排名




書目名稱Learning in the Absence of Training Data年度引用




書目名稱Learning in the Absence of Training Data年度引用學(xué)科排名




書目名稱Learning in the Absence of Training Data讀者反饋




書目名稱Learning in the Absence of Training Data讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:53:06 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:05:09 | 只看該作者
地板
發(fā)表于 2025-3-22 05:26:19 | 只看該作者
5#
發(fā)表于 2025-3-22 12:30:30 | 只看該作者
6#
發(fā)表于 2025-3-22 16:56:35 | 只看該作者
7#
發(fā)表于 2025-3-22 19:49:33 | 只看該作者
8#
發(fā)表于 2025-3-22 23:58:30 | 只看該作者
9#
發(fā)表于 2025-3-23 02:37:16 | 只看該作者
10#
發(fā)表于 2025-3-23 07:56:24 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 16:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
民县| 县级市| 永昌县| 凤台县| 隆昌县| 襄城县| 浏阳市| 三明市| 微博| 阳原县| 微博| 蕲春县| 邛崃市| 利辛县| 青河县| 都兰县| 海丰县| 厦门市| 个旧市| 建阳市| 石渠县| 巴彦淖尔市| 海晏县| 京山县| 伽师县| 新密市| 陵水| 望江县| 钟祥市| 永川市| 大同市| 武义县| 蒙山县| 西宁市| 泽库县| 台中县| 同江市| 赣榆县| 卢湾区| 达孜县| 淮北市|