找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Learning in Non-Stationary Environments; Methods and Applicat Moamar Sayed-Mouchaweh,Edwin Lughofer Book 2012 Springer Science+Business Med

[復(fù)制鏈接]
查看: 39373|回復(fù): 52
樓主
發(fā)表于 2025-3-21 18:57:23 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Learning in Non-Stationary Environments
副標(biāo)題Methods and Applicat
編輯Moamar Sayed-Mouchaweh,Edwin Lughofer
視頻videohttp://file.papertrans.cn/583/582968/582968.mp4
概述Shows the state-of-the-art in dynamic learning, discussing advanced aspects and concepts.Presenting open problems and future challenges in this field.Examines the links between the different methods a
圖書封面Titlebook: Learning in Non-Stationary Environments; Methods and Applicat Moamar Sayed-Mouchaweh,Edwin Lughofer Book 2012 Springer Science+Business Med
描述.Recent decades have seen rapid advances in automatization processes, supported by modern machines and computers. The result is significant increases in system complexity and state changes, information sources, the need for faster data handling and the integration of environmental influences. Intelligent systems, equipped with a taxonomy of data-driven system identification and machine learning algorithms, can handle these problems partially. Conventional learning algorithms in a batch off-line setting fail whenever dynamic changes of the process appear due to non-stationary environments and external influences. .?.Learning in Non-Stationary Environments: Methods and Applications .offers a wide-ranging, comprehensive review of recent developments and important methodologies in the field. The coverage focuses on dynamic learning in unsupervised problems, dynamic learning in supervised classification and dynamic learning in supervised regression problems. A later section is dedicated to applications in which dynamic learning methods serve as keystones for achieving models with high accuracy. .?.Rather than rely on a mathematical theorem/proof style, the editors highlight numerous fig
出版日期Book 2012
關(guān)鍵詞Dynamic learning; Knowledge extraction; adaptive modeling; data streams; drifts and shifts; dynamic dimen
版次1
doihttps://doi.org/10.1007/978-1-4419-8020-5
isbn_softcover978-1-4899-9340-3
isbn_ebook978-1-4419-8020-5
copyrightSpringer Science+Business Media New York 2012
The information of publication is updating

書目名稱Learning in Non-Stationary Environments影響因子(影響力)




書目名稱Learning in Non-Stationary Environments影響因子(影響力)學(xué)科排名




書目名稱Learning in Non-Stationary Environments網(wǎng)絡(luò)公開度




書目名稱Learning in Non-Stationary Environments網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Learning in Non-Stationary Environments被引頻次




書目名稱Learning in Non-Stationary Environments被引頻次學(xué)科排名




書目名稱Learning in Non-Stationary Environments年度引用




書目名稱Learning in Non-Stationary Environments年度引用學(xué)科排名




書目名稱Learning in Non-Stationary Environments讀者反饋




書目名稱Learning in Non-Stationary Environments讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:59:20 | 只看該作者
https://doi.org/10.1007/978-1-4419-8020-5Dynamic learning; Knowledge extraction; adaptive modeling; data streams; drifts and shifts; dynamic dimen
板凳
發(fā)表于 2025-3-22 02:41:41 | 只看該作者
地板
發(fā)表于 2025-3-22 05:07:49 | 只看該作者
http://image.papertrans.cn/l/image/582968.jpg
5#
發(fā)表于 2025-3-22 10:32:32 | 只看該作者
6#
發(fā)表于 2025-3-22 16:22:59 | 只看該作者
Book 2012in system complexity and state changes, information sources, the need for faster data handling and the integration of environmental influences. Intelligent systems, equipped with a taxonomy of data-driven system identification and machine learning algorithms, can handle these problems partially. Con
7#
發(fā)表于 2025-3-22 19:52:40 | 只看該作者
8#
發(fā)表于 2025-3-22 23:33:27 | 只看該作者
Katharina Tschumitschew,Frank Klawonnnsbesondere für Nicht- Fachleute. Daher: Zu Risiken und Nebenwirkungen bei Computer, Smartphone & Co. fragen Sie am besten Tobias Schr?del – oder Ihren Datenschützer.978-3-658-10857-1978-3-658-10858-8
9#
發(fā)表于 2025-3-23 05:27:12 | 只看該作者
10#
發(fā)表于 2025-3-23 07:52:13 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 03:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
泰顺县| 股票| 南华县| 孙吴县| 来凤县| 兰西县| 阿克苏市| 永川市| 沿河| 昭苏县| 凤凰县| 灵璧县| 南靖县| 灌阳县| 陆川县| 长顺县| 祁阳县| 滨州市| 民县| 德清县| 富平县| 连山| 乐至县| 普兰店市| 东阳市| 容城县| 香格里拉县| 海口市| 宁武县| 罗源县| 德昌县| 深州市| 广德县| 华坪县| 襄汾县| 蒙阴县| 双桥区| 昆明市| 武隆县| 望城县| 宜阳县|