找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Learning in Graphical Models; Michael I. Jordan Book 1998 Springer Science+Business Media Dordrecht 1998 Bayesian network.Latent variable

[復(fù)制鏈接]
樓主: Enlightening
11#
發(fā)表于 2025-3-23 12:52:29 | 只看該作者
12#
發(fā)表于 2025-3-23 13:51:14 | 只看該作者
13#
發(fā)表于 2025-3-23 19:24:39 | 只看該作者
An Introduction to Variational Methods for Graphical Modelsxamples of graphical models, including the QMR-DT database, the sigmoid belief network, the Boltzmann machine, and several variants of hidden Markov models, in which it is infeasible to run exact inference algorithms. We then introduce variational methods, showing how upper and lower bounds can be f
14#
發(fā)表于 2025-3-23 23:41:38 | 只看該作者
Improving the Mean Field Approximation Via the Use of Mixture Distributionshods make a completely factorized approximation to the posterior, which is unlikely to be accurate when the posterior is multimodal. Indeed, if the posterior is multi-modal, only one of the modes can be captured. To improve the mean field approximation in such cases, we employ mixture models as post
15#
發(fā)表于 2025-3-24 04:27:40 | 只看該作者
Introduction to Monte Carlo Methods high—dimensional problems such as arise in inference with graphical models. After the methods have been described, the terminology of Markov chain Monte Carlo methods is presented. The chapter concludes with a discussion of advanced methods, including methods for reducing random walk behaviour..For
16#
發(fā)表于 2025-3-24 08:01:14 | 只看該作者
17#
發(fā)表于 2025-3-24 11:45:54 | 只看該作者
18#
發(fā)表于 2025-3-24 14:55:02 | 只看該作者
19#
發(fā)表于 2025-3-24 19:13:31 | 只看該作者
20#
發(fā)表于 2025-3-25 01:03:35 | 只看該作者
A View of the Em Algorithm that Justifies Incremental, Sparse, and other Variants free energy and show that the M step maximizes this function with respect to the model parameters and the E step maximizes it with respect to the distribution over the unobserved variables. From this perspective, it is easy to justify an incremental variant of the EM algorithm in which the distribu
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 06:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
个旧市| 中西区| 通渭县| 彭州市| 九台市| 安多县| 澜沧| 台安县| 尚志市| 南京市| 南康市| 铜鼓县| 天水市| 印江| 科技| 仙桃市| 山东省| 泸水县| 邻水| 鄄城县| 佛教| 田东县| 五莲县| 陵川县| 凤庆县| 湖北省| 怀仁县| 吉安市| 汉寿县| 喀喇| 太谷县| 芜湖市| 灌阳县| 皋兰县| 嵩明县| 镇坪县| 锦屏县| 渭源县| 望谟县| 利辛县| 绩溪县|