找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Learning from Data Streams in Evolving Environments; Methods and Applicat Moamar Sayed-Mouchaweh Book 2019 Springer International Publishin

[復(fù)制鏈接]
查看: 23453|回復(fù): 48
樓主
發(fā)表于 2025-3-21 16:32:39 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Learning from Data Streams in Evolving Environments
副標(biāo)題Methods and Applicat
編輯Moamar Sayed-Mouchaweh
視頻videohttp://file.papertrans.cn/583/582934/582934.mp4
概述Provides multiple examples to facilitate the understanding data streams in non-stationary environments.Presents several application cases to show how the methods solve different real world problems.Di
叢書名稱Studies in Big Data
圖書封面Titlebook: Learning from Data Streams in Evolving Environments; Methods and Applicat Moamar Sayed-Mouchaweh Book 2019 Springer International Publishin
描述.This edited book covers recent advances of techniques, methods and tools treating the problem of learning from data streams generated by evolving non-stationary processes. The goal is to discuss and overview the advanced techniques, methods and tools that are dedicated to manage, exploit and interpret data streams in non-stationary environments. The book includes the required notions, definitions, and background to understand the problem of learning from data streams in non-stationary environments and synthesizes the state-of-the-art in the domain, discussing advanced aspects and concepts and presenting open problems and future challenges in this field...Provides multiple examples to facilitate the understanding data streams in non-stationary environments;.Presents several application cases to show how the methods solve different real world problems;.Discusses the links between methods to help stimulate new research and application directions...
出版日期Book 2019
關(guān)鍵詞Machine Learning; Neural Networks and Learning Systems; Artificial Intelligence; Data streams in non-st
版次1
doihttps://doi.org/10.1007/978-3-319-89803-2
isbn_softcover978-3-030-07862-1
isbn_ebook978-3-319-89803-2Series ISSN 2197-6503 Series E-ISSN 2197-6511
issn_series 2197-6503
copyrightSpringer International Publishing AG, part of Springer Nature 2019
The information of publication is updating

書目名稱Learning from Data Streams in Evolving Environments影響因子(影響力)




書目名稱Learning from Data Streams in Evolving Environments影響因子(影響力)學(xué)科排名




書目名稱Learning from Data Streams in Evolving Environments網(wǎng)絡(luò)公開度




書目名稱Learning from Data Streams in Evolving Environments網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Learning from Data Streams in Evolving Environments被引頻次




書目名稱Learning from Data Streams in Evolving Environments被引頻次學(xué)科排名




書目名稱Learning from Data Streams in Evolving Environments年度引用




書目名稱Learning from Data Streams in Evolving Environments年度引用學(xué)科排名




書目名稱Learning from Data Streams in Evolving Environments讀者反饋




書目名稱Learning from Data Streams in Evolving Environments讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:23:20 | 只看該作者
Transfer Learning in Non-stationary Environments,line transfer learning in non-stationary environments. A brief summary of the results achieved by these approaches in the literature is presented, highlighting the benefits of integrating these two fields. As the first work to provide a detailed discussion of the relationship between transfer learni
板凳
發(fā)表于 2025-3-22 04:28:21 | 只看該作者
地板
發(fā)表于 2025-3-22 07:07:15 | 只看該作者
Error-Bounded Approximation of Data Stream: Methods and Theories,near-time algorithms are introduced to construct error-bounded piecewise linear representation for data stream. One generates the line segments by data convex analysis, and the other one is based on the transformed space, which can be extended to a general model. We theoretically analyzed and compar
5#
發(fā)表于 2025-3-22 11:58:30 | 只看該作者
6#
發(fā)表于 2025-3-22 13:54:02 | 只看該作者
7#
發(fā)表于 2025-3-22 17:26:02 | 只看該作者
8#
發(fā)表于 2025-3-22 22:38:09 | 只看該作者
Efficient Estimation of Dynamic Density Functions with Applications in Data Streams,timating the Probability Density Function (PDF) of the stream at a set of resampling points. KDE-Track is shown to be more accurate (as reflected by smaller error values) and more computationally efficient (as reflected by shorter running time) when compared with existing density estimation techniqu
9#
發(fā)表于 2025-3-23 04:33:08 | 只看該作者
10#
發(fā)表于 2025-3-23 09:20:50 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 05:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
洛宁县| 阿拉善右旗| 古丈县| 耿马| 土默特左旗| 海口市| 伊川县| 洛川县| 镇雄县| 阿坝| 铁力市| 保定市| 上饶市| 且末县| 天台县| 枣阳市| 犍为县| 错那县| 宁强县| 玛纳斯县| 赤峰市| 固阳县| 紫阳县| 济源市| 安塞县| 原阳县| 甘孜县| 牟定县| 班玛县| 揭东县| 汝城县| 砀山县| 台中县| 双桥区| 汝州市| 黄龙县| 孙吴县| 龙山县| 前郭尔| 兴隆县| 蓬安县|