找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Learning and Intelligent Optimization; 17th International C Meinolf Sellmann,Kevin Tierney Conference proceedings 2023 The Editor(s) (if ap

[復(fù)制鏈接]
樓主: 不友善
31#
發(fā)表于 2025-3-26 22:57:05 | 只看該作者
32#
發(fā)表于 2025-3-27 03:38:19 | 只看該作者
33#
發(fā)表于 2025-3-27 05:18:12 | 只看該作者
,Fast and?Robust Constrained Optimization via?Evolutionary and?Quadratic Programming,erature and sequential quadratic programming approaches. The proposed method is evaluated on numerous constrained optimization tasks from simple low dimensional problems to high dimensional realistic trajectory optimization scenarios, and showcase that is able to outperform other evolutionary algori
34#
發(fā)表于 2025-3-27 11:40:30 | 只看該作者
Hierarchical Machine Unlearning,ing are still not widely used due to model applicability, usage overhead, etc. Based on this situation, we propose a novel hierarchical learning method, Hierarchical Machine Unlearning (HMU), with the known distribution of unlearning requests. Compared with previous methods, ours has better efficien
35#
發(fā)表于 2025-3-27 13:59:53 | 只看該作者
36#
發(fā)表于 2025-3-27 19:09:56 | 只看該作者
,Generative Models via?Optimal Transport and?Gaussian Processes,that, for a given input, it provides both a prediction and the associated uncertainty. Thus, the generative properties are, by design, guaranteed by sampling the generated element around the prediction and depending on the uncertainty. Results on both toy examples and a dataset of images are provide
37#
發(fā)表于 2025-3-27 22:33:37 | 只看該作者
,Real-World Streaming Process Discovery from?Low-Level Event Data,tes (i.e., case, activity and timestamp) are known, and apply unscaled discovery techniques to produce control-flow process models. In this research, we propose an original approach we have designed and deployed to mine processes of businesses. It features fully streamed and real-time techniques to
38#
發(fā)表于 2025-3-28 04:00:32 | 只看該作者
39#
發(fā)表于 2025-3-28 09:33:38 | 只看該作者
,Heuristics Selection with?ML in?CP Optimizer, of diverse benchmark problems that is used to evaluate and document CPO performance before each release. This work also addresses two methodological challenges: the ability of the trained predictive models to robustly generalize to the diverse set of problems that may be encountered in practice, an
40#
發(fā)表于 2025-3-28 11:29:49 | 只看該作者
,Model-Based Feature Selection for?Neural Networks: A Mixed-Integer Programming Approach,lly reduce the size of the input to .15% while maintaining a good classification accuracy. This allows us to design DNNs with significantly fewer connections, reducing computational effort and producing DNNs that are more robust towards adversarial attacks.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 07:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
龙海市| 五寨县| 井陉县| 唐河县| 平度市| 安塞县| 南川市| 隆子县| 临沧市| 施甸县| 革吉县| 东方市| 潼南县| 尚志市| 六安市| 金平| 黎城县| 高雄县| 若尔盖县| 湾仔区| 兴宁市| 大足县| 杭锦旗| 白河县| 墨竹工卡县| 合川市| 磴口县| 宁陕县| 徐州市| 胶州市| 遂溪县| 岫岩| 精河县| 凉城县| 枣庄市| 潜山县| 绥德县| 沂南县| 清苑县| 德州市| 鄱阳县|