找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Learning and Intelligent Optimization; 9th International Co Clarisse Dhaenens,Laetitia Jourdan,Marie-Eléonore Conference proceedings 2015

[復(fù)制鏈接]
查看: 48914|回復(fù): 63
樓主
發(fā)表于 2025-3-21 17:57:55 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Learning and Intelligent Optimization
副標題9th International Co
編輯Clarisse Dhaenens,Laetitia Jourdan,Marie-Eléonore
視頻videohttp://file.papertrans.cn/583/582896/582896.mp4
概述Includes supplementary material:
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Learning and Intelligent Optimization; 9th International Co Clarisse Dhaenens,Laetitia Jourdan,Marie-Eléonore  Conference proceedings 2015
描述.This book constitutes the thoroughly refereed post-conference proceedings of the 9th International Conference on Learning and Optimization, LION 9, which was held in Lille, France, in January 2015..The 31 contributions presented were carefully reviewed and selected for inclusion in this book. The papers address all fields between machine learning, artificial intelligence, mathematical programming and algorithms for hard optimization problems. Special focus is given to algorithm selection and configuration, learning, fitness landscape, applications, dynamic optimization, multi-objective, max-clique problems, bayesian optimization and global optimization, data mining and - in a special session - also on dynamic optimization..
出版日期Conference proceedings 2015
關(guān)鍵詞Algorithm construction; Answer set programming; Bio-inspired approaches; Bio-inspired optimization; Clas
版次1
doihttps://doi.org/10.1007/978-3-319-19084-6
isbn_softcover978-3-319-19083-9
isbn_ebook978-3-319-19084-6Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer International Publishing Switzerland 2015
The information of publication is updating

書目名稱Learning and Intelligent Optimization影響因子(影響力)




書目名稱Learning and Intelligent Optimization影響因子(影響力)學(xué)科排名




書目名稱Learning and Intelligent Optimization網(wǎng)絡(luò)公開度




書目名稱Learning and Intelligent Optimization網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Learning and Intelligent Optimization被引頻次




書目名稱Learning and Intelligent Optimization被引頻次學(xué)科排名




書目名稱Learning and Intelligent Optimization年度引用




書目名稱Learning and Intelligent Optimization年度引用學(xué)科排名




書目名稱Learning and Intelligent Optimization讀者反饋




書目名稱Learning and Intelligent Optimization讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:53:28 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:34:10 | 只看該作者
地板
發(fā)表于 2025-3-22 06:47:31 | 只看該作者
5#
發(fā)表于 2025-3-22 11:17:37 | 只看該作者
,Dynamic Service Selection with Optimal Stopping and ‘Trivial Choice’,Two different strategies for searching a best-available service in adaptive, open software systems are simulated. The practical advantage of the theoretically optimal strategy is confirmed over a ‘trivial choice’ approach, however the advantage was only small in the simulation.
6#
發(fā)表于 2025-3-22 16:20:14 | 只看該作者
7#
發(fā)表于 2025-3-22 19:58:09 | 只看該作者
https://doi.org/10.1007/978-3-319-19084-6Algorithm construction; Answer set programming; Bio-inspired approaches; Bio-inspired optimization; Clas
8#
發(fā)表于 2025-3-22 23:35:45 | 只看該作者
Learning a Hidden Markov Model-Based Hyper-heuristic,ng useful mutation heuristics. Empirical evidence supports this on the ., ., . and . problems. A new approach to hyper-heuristics is proposed that addresses this problem by modeling and learning hyper-heuristics by means of a hidden Markov Model. Experiments show that this is a feasible and promising approach.
9#
發(fā)表于 2025-3-23 03:52:28 | 只看該作者
Exploring Non-neutral Landscapes with Neutrality-Based Local Search,tion. Some experiments on NK landscapes show that an adaptive discretization is useful to reach high local optima and to launch diversifications automatically. We believe that a hill-climbing using such an adaptive evaluation function could be more appropriated than a classical iterated local search mechanism.
10#
發(fā)表于 2025-3-23 06:32:24 | 只看該作者
A Biased Random-Key Genetic Algorithm for the Multiple Knapsack Assignment Problem,em. The MKAP is a hard problem even for small-sized instances. In this paper, we propose an approximate approach for the MKAP based on a biased random key genetic algorithm. Our solution approach exhibits competitive performance when compared to the best approximate approach reported in the literature.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 16:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
安宁市| 长丰县| 东兴市| 维西| 什邡市| 永寿县| 武定县| 关岭| 山阳县| 灵石县| 琼结县| 盐津县| 库车县| 共和县| 宜黄县| 招远市| 广南县| 玉环县| 贵港市| 佛学| 杭锦旗| 渝北区| 连平县| 鄂托克旗| 靖宇县| 马龙县| 叙永县| 新津县| 淮阳县| 武定县| 徐汇区| 石狮市| 常山县| 芜湖市| 咸阳市| 资阳市| 永吉县| 乌什县| 丹东市| 黎城县| 宜都市|