找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Learning and Intelligent Optimization; 15th International C Dimitris E. Simos,Panos M. Pardalos,Ilias S. Kotsi Conference proceedings 2021

[復制鏈接]
樓主: Aggrief
31#
發(fā)表于 2025-3-26 22:23:02 | 只看該作者
32#
發(fā)表于 2025-3-27 02:38:25 | 只看該作者
33#
發(fā)表于 2025-3-27 07:41:32 | 只看該作者
0302-9743 n June 2021. ..The 30 full papers presented have been carefully reviewed and selected from 35 submissions. LION deals with designing and engineering ways of "learning" about the performance of different techniques, and ways of using past experience about the algorithm behavior to improve performance
34#
發(fā)表于 2025-3-27 11:19:41 | 只看該作者
,Reparameterization of?Computational Chemistry Force Fields Using GloMPO (Globally Managed Parallel e to poor minima. By managing an optimization task, GloMPO: 1) improves the efficiency with which an iteration budget is used; 2) provides better answers 60% to 80% of the time as compared to traditional approaches; and 3) is often able to identify several independent and degenerate minima.
35#
發(fā)表于 2025-3-27 16:37:47 | 只看該作者
,An Optimization for?Convolutional Network Layers Using the?Viola-Jones Framework and?Ternary Weightby replacing convolutional filters with a set of custom ones inspired by the framework. This reduces the number of operations needed for computing feature values with negligible effects on overall accuracy, allowing for a more optimized network.
36#
發(fā)表于 2025-3-27 18:18:13 | 只看該作者
,Graph Diffusion & PCA Framework for?Semi-supervised Learning,s node classification by enriching the local graph structure by node covariance. We demonstrate the performance of GDPCA in experiments on citation networks and images, and we show that GDPCA compares favourably with the best state-of-the-art algorithms and has significantly lower computational complexity.
37#
發(fā)表于 2025-3-27 22:43:19 | 只看該作者
,Exact Counting and?Sampling of?Optima for?the?Knapsack Problem,number of optima develops for classical random benchmark instances dependent on their generator parameters. We find that the number of global optima can increase exponentially for practically relevant classes of instances with correlated weights and profits which poses a justification for the considered exact counting problem.
38#
發(fā)表于 2025-3-28 04:19:57 | 只看該作者
,Set Team Orienteering Problem with?Time Windows,s. We propose an adaptive large neighborhood search algorithm to solve newly introduced benchmark instances. The preliminary results show the capability of the proposed algorithm to obtain good solutions within reasonable computational times compared to commercial solver CPLEX.
39#
發(fā)表于 2025-3-28 09:02:40 | 只看該作者
40#
發(fā)表于 2025-3-28 12:29:44 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 11:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
吕梁市| 鄂温| 九龙坡区| 外汇| 康定县| 杭锦后旗| 桐城市| 荥阳市| 元朗区| 策勒县| 潮安县| 柞水县| 汉源县| 赣州市| 锡林浩特市| 元阳县| 天门市| 正定县| 疏附县| 苏尼特左旗| 金华市| 石屏县| 屯留县| 普安县| 苏州市| 新安县| 廉江市| 阿拉尔市| 理塘县| 五家渠市| 灵丘县| 兴城市| 宁远县| 九江县| 蕉岭县| 奉节县| 绥阳县| 吴堡县| 丹江口市| 海盐县| 花莲县|