找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Learning and Intelligent Optimization; 13th International C Nikolaos F. Matsatsinis,Yannis Marinakis,Panos Par Conference proceedings 2020

[復制鏈接]
查看: 52661|回復: 67
樓主
發(fā)表于 2025-3-21 16:12:57 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Learning and Intelligent Optimization
副標題13th International C
編輯Nikolaos F. Matsatsinis,Yannis Marinakis,Panos Par
視頻videohttp://file.papertrans.cn/583/582888/582888.mp4
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Learning and Intelligent Optimization; 13th International C Nikolaos F. Matsatsinis,Yannis Marinakis,Panos Par Conference proceedings 2020
描述This book constitutes the thoroughly refereed pChania, Crete, Greece, in May 2019. .The 38 full papers presented have beencarefully reviewed and selected from 52 submissions. The papers focus on advancedresearch developments in such interconnected fields as mathematical programming, global optimization, machine learning, and artificial intelligence and?describe advanced ideas, technologies, methods, and applications in optimization and machine learning..
出版日期Conference proceedings 2020
關(guān)鍵詞artificial intelligence; combinatorial optimization; communication systems; computer networks; computer
版次1
doihttps://doi.org/10.1007/978-3-030-38629-0
isbn_softcover978-3-030-38628-3
isbn_ebook978-3-030-38629-0Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer Nature Switzerland AG 2020
The information of publication is updating

書目名稱Learning and Intelligent Optimization影響因子(影響力)




書目名稱Learning and Intelligent Optimization影響因子(影響力)學科排名




書目名稱Learning and Intelligent Optimization網(wǎng)絡公開度




書目名稱Learning and Intelligent Optimization網(wǎng)絡公開度學科排名




書目名稱Learning and Intelligent Optimization被引頻次




書目名稱Learning and Intelligent Optimization被引頻次學科排名




書目名稱Learning and Intelligent Optimization年度引用




書目名稱Learning and Intelligent Optimization年度引用學科排名




書目名稱Learning and Intelligent Optimization讀者反饋




書目名稱Learning and Intelligent Optimization讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:04:43 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:56:56 | 只看該作者
Towards Improving Merging Heuristics for Binary Decision Diagrams, multigraphs and represent the solution space of binary optimization problems in a recursive way. During their construction, merging of nodes in this multigraph is applied to keep the size within polynomial bounds resulting in a discrete relaxation of the original problem. The longest path length th
地板
發(fā)表于 2025-3-22 06:00:26 | 只看該作者
On Polynomial Solvability of One Quadratic Euclidean Clustering Problem on a Line,racluster sums of the squared distances between clusters elements and their centers. The centers of some clusters are given as an input, while the other centers are unknown and defined as centroids (geometrical centers). It is known that the general case of the problem is strongly NP-hard. We show t
5#
發(fā)表于 2025-3-22 12:38:28 | 只看該作者
6#
發(fā)表于 2025-3-22 14:33:12 | 只看該作者
7#
發(fā)表于 2025-3-22 20:16:06 | 只看該作者
8#
發(fā)表于 2025-3-22 21:45:47 | 只看該作者
A Hessian Free Neural Networks Training Algorithm with Curvature Scaled Adaptive Momentum, (HF-CSAM). The algorithm’s weight update rule is similar to SGD with momentum but with two main differences arising from the formulation of the training task as a constrained optimization problem: (i) the momentum term is scaled with curvature information (in the form of the Hessian); (ii) the coef
9#
發(fā)表于 2025-3-23 02:21:06 | 只看該作者
Irreducible Bin Packing: Complexity, Solvability and Application to the Routing Open Shop,f any two bins is larger than the bin capacity. There is a trivial upper bound on the optimum in terms of the total size of the items. We refer to the decision version of this problem with the number of bins equal to the trivial upper bound as Irreducible Bin Packing. We prove that this problem is N
10#
發(fā)表于 2025-3-23 08:49:50 | 只看該作者
Learning Probabilistic Constraints for Surgery Scheduling Using a Support Vector Machine,od for tackling probabilistic constraints using machine learning. The technique is inspired by models that use slacks in capacity planning. Essentially support vector classification is used to learn a linear constraint that will replace the probabilistic constraint. The data used to learn this const
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 10:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
马山县| 金门县| 海兴县| 池州市| 祁门县| 区。| 崇明县| 藁城市| 康定县| 依安县| 疏勒县| 永登县| 盐山县| 嘉义县| 河曲县| 秦皇岛市| 榆树市| 德保县| 兴山县| 许昌市| 南昌县| 东至县| 林芝县| 仪陇县| 博白县| 锡林郭勒盟| 九江市| 昌黎县| 武定县| 杨浦区| 聂拉木县| 阜南县| 临沂市| 皋兰县| 通州区| 滨海县| 克什克腾旗| 松原市| 吉林市| 建昌县| 姜堰市|