找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Learning and Intelligent Optimization; 12th International C Roberto Battiti,Mauro Brunato,Panos M. Pardalos Conference proceedings 2019 Spr

[復(fù)制鏈接]
樓主: Clientele
31#
發(fā)表于 2025-3-26 22:54:46 | 只看該作者
32#
發(fā)表于 2025-3-27 03:30:24 | 只看該作者
Creating a Multi-iterative-Priority-Rule for the Job Shop Scheduling Problem with Focus on Tardy Jol paths is used to solve the static problem as a benchmark. The results show that all types provide better results than classical PR and that with and without time limit the types from best to worst are: MIPR, MPR, IPR, and PR. The gaps to the metaheuristic are also reported.
33#
發(fā)表于 2025-3-27 09:14:16 | 只看該作者
34#
發(fā)表于 2025-3-27 12:08:53 | 只看該作者
How , Can Be Helpful to Iteratively Compute Negative Curvature Directions,can enhance the performance of the CG, allowing the computation of negative curvature directions, too. The overall method in our proposal significantly generalizes the theory proposed for [.] and [.], and straightforwardly allows the use of a CG-based method on indefinite Newton’s equations.
35#
發(fā)表于 2025-3-27 15:24:19 | 只看該作者
Solving Scalarized Subproblems within Evolutionary Algorithms for Multi-criteria Shortest Path Probof problem instances shows the effectiveness of the approach in comparison to a well-known mutation operator in terms of convergence speed and approximation quality. In addition, we glance at the neighbourhood structure and similarity of obtained Pareto-optimal solutions and derive promising directions for future work.
36#
發(fā)表于 2025-3-27 19:00:01 | 只看該作者
0302-9743 mization, machine learning, and artificial intelligence. Special focus is given to advanced ideas, technologies, methods, and applications in optimization and machine learning..978-3-030-05347-5978-3-030-05348-2Series ISSN 0302-9743 Series E-ISSN 1611-3349
37#
發(fā)表于 2025-3-28 00:55:33 | 只看該作者
38#
發(fā)表于 2025-3-28 04:13:28 | 只看該作者
39#
發(fā)表于 2025-3-28 07:14:03 | 只看該作者
An Effective Heuristic for a Single-Machine Scheduling Problem with Family Setups and Resource Consr an extensive computational experience on benchmark of instances from the literature and randomly generated in this work. Results show that the developed heuristic significantly outperforms a state-of-the-art heuristic in terms of solution quality.
40#
發(fā)表于 2025-3-28 10:56:17 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 16:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
盐城市| 姚安县| 富阳市| 郧西县| 白沙| 弋阳县| 陆良县| 收藏| 舞钢市| 兖州市| 台山市| 柞水县| 武功县| 曲靖市| 静安区| 容城县| 江北区| 鄱阳县| 巧家县| 额济纳旗| 库尔勒市| 城口县| 盈江县| 正蓝旗| 韶关市| 介休市| 绥阳县| 龙山县| 翼城县| 宿迁市| 慈利县| 吉木萨尔县| 辰溪县| 湘潭市| 略阳县| 黄大仙区| 麻栗坡县| 灌阳县| 胶州市| 舒城县| 武陟县|