找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Learning Theory; 18th Annual Conferen Peter Auer,Ron Meir Conference proceedings 2005 Springer-Verlag Berlin Heidelberg 2005 Boosting.Suppo

[復(fù)制鏈接]
樓主: 技巧
51#
發(fā)表于 2025-3-30 10:29:26 | 只看該作者
Stability and Generalization of Bipartite Ranking Algorithmsn bounds for ranking, which are based on uniform convergence and in many cases cannot be applied to these algorithms. A comparison of the bounds we obtain with corresponding bounds for classification algorithms yields some interesting insights into the difference in generalization behaviour between ranking and classification.
52#
發(fā)表于 2025-3-30 13:16:52 | 只看該作者
53#
發(fā)表于 2025-3-30 17:11:30 | 只看該作者
Conference proceedings 2005ning Theory) held in Bertinoro, Italy from June 27 to 30, 2005. The technical program contained 45 papers selected from 120 submissions, 3 open problems selected from among 5 contributed, and 2 invited lectures. The invited lectures were given by Sergiu Hart on “Uncoupled Dynamics and Nash Equilibri
54#
發(fā)表于 2025-3-30 23:32:20 | 只看該作者
A New Perspective on an Old Perceptron Algorithmlgorithm in the inseparable case. We describe a multiclass extension of the algorithm. This extension is used in an experimental evaluation in which we compare the proposed algorithm to the Perceptron algorithm.
55#
發(fā)表于 2025-3-31 03:40:07 | 只看該作者
56#
發(fā)表于 2025-3-31 08:06:23 | 只看該作者
Ranking and Scoring Using Empirical Risk Minimizationking algorithms based on boosting and support vector machines. Just like in binary classification, fast rates of convergence are achieved under certain noise assumption. General sufficient conditions are proposed in several special cases that guarantee fast rates of convergence.
57#
發(fā)表于 2025-3-31 12:35:33 | 只看該作者
Loss Bounds for Online Category Rankingounds for the algorithms by using the properties of the dual solution while imposing additional constraints on the dual form. Finally, we outline and analyze the convergence of a general update that can be employed with any Bregman divergence.
58#
發(fā)表于 2025-3-31 15:30:03 | 只看該作者
The Value of Agreement, a New Boosting Algorithmearners will result in a larger improvement whereas using two copies of a single algorithm gives no advantage at all. As a proof of concept, we apply the algorithm, named AgreementBoost, to a web classification problem where an up to 40% reduction in the number of labeled examples is obtained.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 16:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
丽江市| 郎溪县| 乃东县| 岑溪市| 宣威市| 佛山市| 宁强县| 永福县| 宁海县| 沂源县| 永川市| 隆回县| 南岸区| 眉山市| 岳普湖县| 台北县| 长子县| 安化县| 靖安县| 上栗县| 竹山县| 亳州市| 庆云县| 泰宁县| 南丰县| 铁岭县| 民丰县| 阳朔县| 沂南县| 尼玛县| 邹平县| 潞城市| 华容县| 石河子市| 合山市| 东乡| 崇仁县| 揭阳市| 城步| 交城县| 湛江市|