找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Learning Theory; 19th Annual Conferen Gábor Lugosi,Hans Ulrich Simon Conference proceedings 2006 Springer-Verlag Berlin Heidelberg 2006 Clu

[復(fù)制鏈接]
樓主: Coagulant
41#
發(fā)表于 2025-3-28 16:36:16 | 只看該作者
Random Multivariate Search Treesr kd-trees, quadtrees, BSP trees, simplex trees, grid trees, epsilon nets, and many other structures. The height of these trees is logarithmic in the data size for random input. Some search operations such as range search and nearest neighbor search have surprising complexities. So, we will give a b
42#
發(fā)表于 2025-3-28 21:26:57 | 只看該作者
43#
發(fā)表于 2025-3-28 23:24:36 | 只看該作者
44#
發(fā)表于 2025-3-29 04:11:15 | 只看該作者
PAC Learning Axis-Aligned Mixtures of Gaussians with No Separation Assumptions introduced by Kearns?et?al. [13]. Here the task is to construct a hypothesis mixture of Gaussians that is statistically indistinguishable from the actual mixture generating the data; specifically, the KL?divergence should be at most ...In this scenario, we give a poly(./.) time algorithm that lear
45#
發(fā)表于 2025-3-29 08:56:52 | 只看該作者
Stable Transductive Learningres the sensitivity of the algorithm to most pairwise exchanges of training and test set points. Our bound is based on a novel concentration inequality for symmetric functions of permutations. We also present a simple sampling technique that can estimate, with high probability, the weak stability of
46#
發(fā)表于 2025-3-29 12:25:48 | 只看該作者
47#
發(fā)表于 2025-3-29 17:46:49 | 只看該作者
48#
發(fā)表于 2025-3-29 21:31:50 | 只看該作者
Functional Classification with Margin Conditionsthis sample a classifier that is a function which would predict the value of . from the observation of .. The special case where . is a functional space is of particular interest due to the so called .. In a recent paper, Biau . [1] propose to filter the ..’s in the Fourier basis and to apply the cl
49#
發(fā)表于 2025-3-30 01:02:19 | 只看該作者
50#
發(fā)表于 2025-3-30 06:00:49 | 只看該作者
Maximum Entropy Distribution Estimation with Generalized Regularizationor, alternatively, by convex regularization. We provide fully general performance guarantees and an algorithm with a complete convergence proof. As special cases, we can easily derive performance guarantees for many known regularization types, including ?., ?., . and ?. + . style regularization. Fur
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 23:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
太仓市| 防城港市| 长汀县| 天等县| 洛浦县| 纳雍县| 云和县| 鹿邑县| 永寿县| 巍山| 新绛县| 芒康县| 莎车县| 大邑县| 荔浦县| 信阳市| 宜城市| 东海县| 白河县| 五莲县| 鄂托克前旗| 巴青县| 嘉兴市| 巫山县| 涿鹿县| 洪江市| 天峻县| 肥东县| 广东省| 勐海县| 平潭县| 蓬安县| 大姚县| 伊宁县| 南投县| 浪卡子县| 镇坪县| 札达县| 乐业县| 齐河县| 凤山县|