找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Learning Representation for Multi-View Data Analysis; Models and Applicati Zhengming Ding,Handong Zhao,Yun Fu Book 2019 Springer Nature Swi

[復(fù)制鏈接]
查看: 25384|回復(fù): 44
樓主
發(fā)表于 2025-3-21 19:26:49 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Learning Representation for Multi-View Data Analysis
副標(biāo)題Models and Applicati
編輯Zhengming Ding,Handong Zhao,Yun Fu
視頻videohttp://file.papertrans.cn/583/582783/582783.mp4
概述Broadens your understanding of multi-view data analysis.Explains how to design an effective multi-view data representation model.Reinforces multi-view representation principles with real-world practic
叢書(shū)名稱Advanced Information and Knowledge Processing
圖書(shū)封面Titlebook: Learning Representation for Multi-View Data Analysis; Models and Applicati Zhengming Ding,Handong Zhao,Yun Fu Book 2019 Springer Nature Swi
描述.This book equips readers to handle complex multi-view data representation, centered around several major visual applications, sharing many tips and insights through a unified learning framework. This framework is able to model most existing multi-view learning and domain adaptation, enriching readers’ understanding from their similarity, and differences based on data organization and problem?settings, as well as the research goal..A comprehensive review exhaustively provides the key recent research on multi-view data analysis, i.e., multi-view clustering, multi-view classification, zero-shot learning, and domain adaption. More practical challenges in multi-view data analysis are discussed including incomplete, unbalanced and large-scale multi-view learning. .Learning Representation for Multi-View Data Analysis .covers a wide range of applications in the research fields of big data, human-centered computing, pattern recognition, digital marketing, web mining, and computer vision..
出版日期Book 2019
關(guān)鍵詞Subspace Learing; Matrix Factorization; Deep Learning; Transfer Learning; Clustering; Multi-view Data
版次1
doihttps://doi.org/10.1007/978-3-030-00734-8
isbn_ebook978-3-030-00734-8Series ISSN 1610-3947 Series E-ISSN 2197-8441
issn_series 1610-3947
copyrightSpringer Nature Switzerland AG 2019
The information of publication is updating

書(shū)目名稱Learning Representation for Multi-View Data Analysis影響因子(影響力)




書(shū)目名稱Learning Representation for Multi-View Data Analysis影響因子(影響力)學(xué)科排名




書(shū)目名稱Learning Representation for Multi-View Data Analysis網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Learning Representation for Multi-View Data Analysis網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Learning Representation for Multi-View Data Analysis被引頻次




書(shū)目名稱Learning Representation for Multi-View Data Analysis被引頻次學(xué)科排名




書(shū)目名稱Learning Representation for Multi-View Data Analysis年度引用




書(shū)目名稱Learning Representation for Multi-View Data Analysis年度引用學(xué)科排名




書(shū)目名稱Learning Representation for Multi-View Data Analysis讀者反饋




書(shū)目名稱Learning Representation for Multi-View Data Analysis讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:17:50 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:59:32 | 只看該作者
地板
發(fā)表于 2025-3-22 05:32:06 | 只看該作者
5#
發(fā)表于 2025-3-22 12:39:17 | 只看該作者
6#
發(fā)表于 2025-3-22 12:55:40 | 只看該作者
7#
發(fā)表于 2025-3-22 21:06:26 | 只看該作者
8#
發(fā)表于 2025-3-23 00:53:28 | 只看該作者
logistik.???Es zeigt, wie?die Prozesse und Organisation der Instandhaltung sowie die damit verbundene Ersatzteillogistik??unter Berücksichtigung ihrer Abh?ngigkeiten optimiert? werden. Der??integrierte? Planungsansatz f?rdert ein zielgerichtetes, schrittweises und strukturiertes Vorgehen mit einer n
9#
發(fā)表于 2025-3-23 02:00:03 | 只看該作者
10#
發(fā)表于 2025-3-23 09:05:53 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 07:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
洪江市| 中超| 巴塘县| 板桥市| 长宁县| 卢氏县| 元氏县| 岱山县| 集安市| 玛纳斯县| 舞阳县| 万载县| 广饶县| 梁山县| 杂多县| 大姚县| 霍邱县| 云林县| 泸定县| 固阳县| 宜阳县| 佛学| 建瓯市| 湟源县| 蒙城县| 卫辉市| 荔浦县| 望都县| 无为县| 沅江市| 梁河县| 汾西县| 长沙县| 安福县| 石狮市| 射阳县| 迁安市| 崇左市| 绥阳县| 延津县| 阿鲁科尔沁旗|