找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Learning Motor Skills; From Algorithms to R Jens Kober,Jan Peters Book 2014 Springer International Publishing Switzerland 2014 Machine Lear

[復制鏈接]
查看: 55061|回復: 36
樓主
發(fā)表于 2025-3-21 17:01:05 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Learning Motor Skills
副標題From Algorithms to R
編輯Jens Kober,Jan Peters
視頻videohttp://file.papertrans.cn/583/582768/582768.mp4
概述Presents an overview of reinforcement learning as applied to robotics.Provides novel algorithms and novel applications for learning motor skills.Extensively evaluates the applications of the approache
叢書名稱Springer Tracts in Advanced Robotics
圖書封面Titlebook: Learning Motor Skills; From Algorithms to R Jens Kober,Jan Peters Book 2014 Springer International Publishing Switzerland 2014 Machine Lear
描述.This book presents the state of the art in reinforcement learning applied to robotics both in terms of novel algorithms and applications. It discusses recent approaches that allow robots to learn motor..skills and presents tasks that need to take into account the dynamic behavior of the robot and its environment, where a kinematic movement plan is not sufficient. The book illustrates a method that learns to generalize parameterized motor plans which is obtained by imitation or reinforcement learning, by adapting a small set of global parameters and appropriate kernel-based reinforcement learning algorithms. The presented applications explore highly dynamic tasks and exhibit a very efficient learning process. All proposed approaches have been extensively validated with benchmarks tasks, in simulation and on real robots. These tasks correspond to sports and games but the presented techniques are also applicable to more mundane household tasks. The book is based on the first author’s doctoral thesis, which won the 2013 EURON Georges Giralt PhD Award..
出版日期Book 2014
關鍵詞Machine Learning; Motor Primitives; Policy Search; Reinforcement Learning; Robotics; Skill Learning
版次1
doihttps://doi.org/10.1007/978-3-319-03194-1
isbn_softcover978-3-319-37732-2
isbn_ebook978-3-319-03194-1Series ISSN 1610-7438 Series E-ISSN 1610-742X
issn_series 1610-7438
copyrightSpringer International Publishing Switzerland 2014
The information of publication is updating

書目名稱Learning Motor Skills影響因子(影響力)




書目名稱Learning Motor Skills影響因子(影響力)學科排名




書目名稱Learning Motor Skills網(wǎng)絡公開度




書目名稱Learning Motor Skills網(wǎng)絡公開度學科排名




書目名稱Learning Motor Skills被引頻次




書目名稱Learning Motor Skills被引頻次學科排名




書目名稱Learning Motor Skills年度引用




書目名稱Learning Motor Skills年度引用學科排名




書目名稱Learning Motor Skills讀者反饋




書目名稱Learning Motor Skills讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 21:46:24 | 只看該作者
Reinforcement Learning in Robotics: A Survey, challenges of robotic problems provide both inspiration, impact, and validation for developments in reinforcement learning. The relationship between disciplines has sufficient promise to be likened to that between physics and mathematics. In this article, we attempt to strengthen the links between
板凳
發(fā)表于 2025-3-22 02:59:08 | 只看該作者
地板
發(fā)表于 2025-3-22 08:14:48 | 只看該作者
Policy Search for Motor Primitives in Robotics,th imitation learning, most of the interesting motor learning problems are high-dimensional reinforcement learning problems. These problems are often beyond the reach of current reinforcement learning methods. In this chapter, we study parametrized policy search methods and apply these to benchmark
5#
發(fā)表于 2025-3-22 11:08:11 | 只看該作者
Reinforcement Learning to Adjust Parametrized Motor Primitives to New Situations, currently often need to re-learn the complete movement. In this chapter, we propose a method that learns to generalize parametrized motor plans by adapting a small set of global parameters, called meta-parameters. We employ reinforcement learning to learn the required meta-parameters to deal with t
6#
發(fā)表于 2025-3-22 13:46:38 | 只看該作者
7#
發(fā)表于 2025-3-22 21:08:27 | 只看該作者
on a square lattice (200 x 200 pixels) with periodic boundary conditions. Consumers behave as optimal foragers, i. e., are able to estimate food concentration within the perception area and to move along the estimated gradient of concentration. There is no satiation effect in consumers feeding, thus
8#
發(fā)表于 2025-3-22 22:57:13 | 只看該作者
Jens Kober,Jan Petersealing with qualitative aspects of systems. For example, when dealing with parameter uncertainty it is usual to provide confidence ranges for numerical outputs, but suppose that one carries out a Monte Carlo simulation for parameter uncertainty, and finds that in 40 % of the simulations the system i
9#
發(fā)表于 2025-3-23 04:01:55 | 只看該作者
10#
發(fā)表于 2025-3-23 07:02:48 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 03:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
同仁县| 新乡市| 丘北县| 高邑县| 绵竹市| 巴马| 永康市| 德保县| 凤台县| 平谷区| 孟村| 安塞县| 平武县| 富裕县| 永寿县| 宾阳县| 玛多县| 临澧县| 石景山区| 巴东县| 沛县| 陕西省| 舞阳县| 汽车| 抚宁县| 蓝田县| 崇州市| 都昌县| 汉阴县| 茌平县| 渝中区| 洛扎县| 株洲市| 浦北县| 米林县| 蓝田县| 茶陵县| 肇州县| 虎林市| 石河子市| 鄂伦春自治旗|