找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Learning Classifier Systems in Data Mining; Larry Bull,Ester Bernadó-Mansilla,John Holmes Book 2008 Springer-Verlag Berlin Heidelberg 2008

[復(fù)制鏈接]
查看: 11117|回復(fù): 44
樓主
發(fā)表于 2025-3-21 17:28:49 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Learning Classifier Systems in Data Mining
編輯Larry Bull,Ester Bernadó-Mansilla,John Holmes
視頻videohttp://file.papertrans.cn/583/582709/582709.mp4
概述Brings together recent data mining applications of a machine learning technique.Covers a wide range of domains demonstrating the utility of the Learning Classifier Systems technique.Includes supplemen
叢書名稱Studies in Computational Intelligence
圖書封面Titlebook: Learning Classifier Systems in Data Mining;  Larry Bull,Ester Bernadó-Mansilla,John Holmes Book 2008 Springer-Verlag Berlin Heidelberg 2008
描述.Just over thirty years after Holland first presented the outline for Learning Classifier System paradigm, the ability of LCS to solve complex real-world problems is becoming clear. In particular, their capability for rule induction in data mining has sparked renewed interest in LCS. This book brings together work by a number of individuals who are demonstrating their good performance in a variety of domains. ..The first contribution is arranged as follows: Firstly, the main forms of LCS are described in some detail. A number of historical uses of LCS in data mining are then reviewed before an overview of the rest of the volume is presented. The rest of this book describes recent research on the use of LCS in the main areas of machine learning data mining: classification, clustering, time-series and numerical prediction, feature selection, ensembles, and knowledge discovery..
出版日期Book 2008
關(guān)鍵詞classification; clustering; cognition; data mining; evolution; evolutionary computation; fuzzy logic; knowl
版次1
doihttps://doi.org/10.1007/978-3-540-78979-6
isbn_softcover978-3-642-09775-1
isbn_ebook978-3-540-78979-6Series ISSN 1860-949X Series E-ISSN 1860-9503
issn_series 1860-949X
copyrightSpringer-Verlag Berlin Heidelberg 2008
The information of publication is updating

書目名稱Learning Classifier Systems in Data Mining影響因子(影響力)




書目名稱Learning Classifier Systems in Data Mining影響因子(影響力)學(xué)科排名




書目名稱Learning Classifier Systems in Data Mining網(wǎng)絡(luò)公開度




書目名稱Learning Classifier Systems in Data Mining網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Learning Classifier Systems in Data Mining被引頻次




書目名稱Learning Classifier Systems in Data Mining被引頻次學(xué)科排名




書目名稱Learning Classifier Systems in Data Mining年度引用




書目名稱Learning Classifier Systems in Data Mining年度引用學(xué)科排名




書目名稱Learning Classifier Systems in Data Mining讀者反饋




書目名稱Learning Classifier Systems in Data Mining讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:05:46 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:12:22 | 只看該作者
Mining Imbalanced Data with Learning Classifier Systems,the bound for high class imbalances are detected. Configuration guidelines are provided, and an algorithm that automatically tunes these XCS’s parameters is presented. Finally, XCS is tested on a large set of real-world problems, appearing to be highly competitive to some of the most well-known machine learning techniques.
地板
發(fā)表于 2025-3-22 07:19:10 | 只看該作者
5#
發(fā)表于 2025-3-22 09:44:10 | 只看該作者
Foreign Exchange Trading Using a Learning Classifier System,System approach shows potential because returns are obtained with no offline training and the technique is inherently adaptive, unlike many of the machine learning methods currently employed for financial trading.
6#
發(fā)表于 2025-3-22 15:17:35 | 只看該作者
7#
發(fā)表于 2025-3-22 19:53:59 | 只看該作者
8#
發(fā)表于 2025-3-23 00:09:45 | 只看該作者
9#
發(fā)表于 2025-3-23 04:36:31 | 只看該作者
1860-949X the Learning Classifier Systems technique.Includes supplemen.Just over thirty years after Holland first presented the outline for Learning Classifier System paradigm, the ability of LCS to solve complex real-world problems is becoming clear. In particular, their capability for rule induction in data
10#
發(fā)表于 2025-3-23 06:20:45 | 只看該作者
Avinash Gandhe,Ssu-Hsin Yu,Raman Mehra,Robert E. Smith all from the same institution, for satisfying my often intrusive (and most likely annoying) avidity for their help and knowledge. It is to Ursula N. Davis at Springer-Verlag that I sincerely apologize for my s978-3-642-07297-0978-3-540-68218-9Series ISSN 0942-5373 Series E-ISSN 2197-4187
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 03:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
儋州市| 阿巴嘎旗| 樟树市| 汤阴县| 高清| 台东县| 南靖县| 新安县| 额尔古纳市| 渝中区| 清原| 洞口县| 玉山县| 二连浩特市| 慈利县| 桓台县| 特克斯县| 那坡县| 长治市| 大新县| 金昌市| 枣庄市| 海南省| 八宿县| 太湖县| 尼木县| 化德县| 新野县| 汶上县| 台中市| 南陵县| 五指山市| 南丹县| 建始县| 南华县| 贵德县| 秦皇岛市| 鄂伦春自治旗| 灌云县| 肥乡县| 阿图什市|