找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Learn TensorFlow 2.0; Implement Machine Le Pramod Singh,Avinash Manure Book 2020 Pramod Singh, Avinash Manure 2020 Machine Learning.Deep L

[復制鏈接]
查看: 13254|回復: 38
樓主
發(fā)表于 2025-3-21 16:50:37 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Learn TensorFlow 2.0
副標題Implement Machine Le
編輯Pramod Singh,Avinash Manure
視頻videohttp://file.papertrans.cn/583/582639/582639.mp4
概述Covers the transition from TensorFlow 1.0 to TensorFlow 2.0.Covers advanced techniques such as GANs and transfer learning.Covers deployment of TensorFlow 2.0 based machine learning and deep learning m
圖書封面Titlebook: Learn TensorFlow 2.0; Implement Machine Le Pramod Singh,Avinash Manure Book 2020 Pramod Singh,  Avinash Manure 2020 Machine Learning.Deep L
描述Learn how to use TensorFlow 2.0 to build machine learning and deep learning models with complete examples.?.The book begins with introducing TensorFlow 2.0 framework and the major changes from its last release. Next, it focuses on building Supervised Machine Learning models using TensorFlow 2.0. It also demonstrates how to build models using customer estimators. Further, it explains how to use TensorFlow 2.0 API to build machine learning and deep learning models for image classification using the standard as well as custom parameters.?.You‘ll review sequence predictions, saving, serving, deploying, and standardized datasets, and then deploy these models to production. All the code presented in the book will be available in the form of executable scripts at Github which allows you to try out the examples and extend them in interesting ways..What You‘ll Learn.Review the new features of TensorFlow 2.0.Use TensorFlow 2.0 to build machine learning and deep learning models?.Perform sequence predictions using TensorFlow 2.0.Deploy TensorFlow 2.0 models with practical examples.Who This Book Is For.Data scientists, machine and deep learning engineers..
出版日期Book 2020
關鍵詞Machine Learning; Deep Learning; TensorFlow 2; 0; Python; Supervised Learning; Neural Networks; Generative
版次1
doihttps://doi.org/10.1007/978-1-4842-5558-2
isbn_softcover978-1-4842-5560-5
isbn_ebook978-1-4842-5558-2
copyrightPramod Singh, Avinash Manure 2020
The information of publication is updating

書目名稱Learn TensorFlow 2.0影響因子(影響力)




書目名稱Learn TensorFlow 2.0影響因子(影響力)學科排名




書目名稱Learn TensorFlow 2.0網(wǎng)絡公開度




書目名稱Learn TensorFlow 2.0網(wǎng)絡公開度學科排名




書目名稱Learn TensorFlow 2.0被引頻次




書目名稱Learn TensorFlow 2.0被引頻次學科排名




書目名稱Learn TensorFlow 2.0年度引用




書目名稱Learn TensorFlow 2.0年度引用學科排名




書目名稱Learn TensorFlow 2.0讀者反饋




書目名稱Learn TensorFlow 2.0讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 21:07:43 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:18:48 | 只看該作者
地板
發(fā)表于 2025-3-22 06:36:46 | 只看該作者
of TensorFlow 2.0 based machine learning and deep learning mLearn how to use TensorFlow 2.0 to build machine learning and deep learning models with complete examples.?.The book begins with introducing TensorFlow 2.0 framework and the major changes from its last release. Next, it focuses on building
5#
發(fā)表于 2025-3-22 11:28:46 | 只看該作者
Neural Networks and Deep Learning with TensorFlow,l discuss deep neural networks, how they differ from simple neural networks, and how to implement deep neural networks with TensorFlow and Keras, again with performance comparisons to simple neural networks.
6#
發(fā)表于 2025-3-22 14:13:50 | 只看該作者
Images with TensorFlow,discuss the concept of transfer learning—how it has been leveraged in computer vision and the difference between a typical machine learning process and transfer learning. Finally, we discuss applications and the advantages of transfer learning.
7#
發(fā)表于 2025-3-22 18:40:13 | 只看該作者
TensorFlow Models in Production,er, we will go over different frameworks to save a model, reload it for prediction, and deploy it. In the first part of the chapter, we review the internals of model deployment and their challenges. The second part demonstrates how to deploy a Python-based machine language model, using Flask (web fr
8#
發(fā)表于 2025-3-23 00:12:30 | 只看該作者
9#
發(fā)表于 2025-3-23 01:50:34 | 只看該作者
10#
發(fā)表于 2025-3-23 08:00:08 | 只看該作者
ribed. The potential application of the computational analyses on improving the design of biological heart valve prostheses is discussed. The need for further advancements in multiscale simulation for increasing our understanding of the effect of mechanical stresses on the leaflet microstructure is
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 04:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
右玉县| 云梦县| 郁南县| 泰顺县| 陇西县| 肥西县| 高台县| 武胜县| 师宗县| 通州区| 延庆县| 习水县| 怀来县| 抚松县| 桂阳县| 宁阳县| 明溪县| 垦利县| 木兰县| 都昌县| 星座| 稻城县| 大冶市| 司法| 太湖县| 洛南县| 全椒县| 班戈县| 建阳市| 保康县| 马龙县| 阿瓦提县| 呼伦贝尔市| 资中县| 额尔古纳市| 桦南县| 丰原市| 仪征市| 吴江市| 沅陵县| 商丘市|