找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Learn Keras for Deep Neural Networks; A Fast-Track Approac Jojo Moolayil Book 2019 Jojo Moolayil 2019 Deep Learning.Keras.Python.Learning a

[復(fù)制鏈接]
查看: 45695|回復(fù): 36
樓主
發(fā)表于 2025-3-21 18:42:12 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Learn Keras for Deep Neural Networks
副標(biāo)題A Fast-Track Approac
編輯Jojo Moolayil
視頻videohttp://file.papertrans.cn/583/582604/582604.mp4
概述The shortest and fastest, yet effective and practical guide to embracing deep learning for beginners.Bypasses the complexities of math, calculus with simple lucid language.Eliminates the need for prof
圖書封面Titlebook: Learn Keras for Deep Neural Networks; A Fast-Track Approac Jojo Moolayil Book 2019 Jojo Moolayil 2019 Deep Learning.Keras.Python.Learning a
描述.Learn, understand, and implement deep neural networks in a math- and programming-friendly approach using Keras and Python. The book focuses on an end-to-end approach to developing supervised learning algorithms in regression and classification with practical business-centric use-cases implemented in Keras...The overall book comprises three sections with two chapters in each section. The first section prepares you with all the necessary basics to get started in deep learning. Chapter 1 introduces you to the world of deep learning and its difference from machine learning, the choices of frameworks for deep learning, and the Keras ecosystem. You will cover a real-life business problem that can be solved by supervised learning algorithms with deep neural networks. You’ll tackle one use case for regression and another for classification leveraging popular Kaggle datasets. ..Later, you will see an interesting and challenging part of deep learning: hyperparameter tuning; helping you further improve your models when building robust deep learning applications. Finally, you’ll further hone your skills in deep learning and cover areas of active development and research in deep learning.?..At
出版日期Book 2019
關(guān)鍵詞Deep Learning; Keras; Python; Learning algorithms; Machine learning; Deep neural network
版次1
doihttps://doi.org/10.1007/978-1-4842-4240-7
isbn_softcover978-1-4842-4239-1
isbn_ebook978-1-4842-4240-7
copyrightJojo Moolayil 2019
The information of publication is updating

書目名稱Learn Keras for Deep Neural Networks影響因子(影響力)




書目名稱Learn Keras for Deep Neural Networks影響因子(影響力)學(xué)科排名




書目名稱Learn Keras for Deep Neural Networks網(wǎng)絡(luò)公開度




書目名稱Learn Keras for Deep Neural Networks網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Learn Keras for Deep Neural Networks被引頻次




書目名稱Learn Keras for Deep Neural Networks被引頻次學(xué)科排名




書目名稱Learn Keras for Deep Neural Networks年度引用




書目名稱Learn Keras for Deep Neural Networks年度引用學(xué)科排名




書目名稱Learn Keras for Deep Neural Networks讀者反饋




書目名稱Learn Keras for Deep Neural Networks讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:07:12 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:27:18 | 只看該作者
Jojo Moolayil formula . Then lim ω(t)=φ..Suppose .. is the space L.(X), for some measure space X. It is reasonable to ask when ω(t) converges to φ pointwise almost everywhere. We show that if |H|.φ is in L.(X) for some α in (1/2,+∞), then pointwise convergence is verified..To motivate our work, consider the foll
地板
發(fā)表于 2025-3-22 06:55:52 | 只看該作者
Jojo Moolayil formula . Then lim ω(t)=φ..Suppose .. is the space L.(X), for some measure space X. It is reasonable to ask when ω(t) converges to φ pointwise almost everywhere. We show that if |H|.φ is in L.(X) for some α in (1/2,+∞), then pointwise convergence is verified..To motivate our work, consider the foll
5#
發(fā)表于 2025-3-22 10:46:25 | 只看該作者
6#
發(fā)表于 2025-3-22 14:26:00 | 只看該作者
Jojo Moolayil formula . Then lim ω(t)=φ..Suppose .. is the space L.(X), for some measure space X. It is reasonable to ask when ω(t) converges to φ pointwise almost everywhere. We show that if |H|.φ is in L.(X) for some α in (1/2,+∞), then pointwise convergence is verified..To motivate our work, consider the foll
7#
發(fā)表于 2025-3-22 17:50:56 | 只看該作者
8#
發(fā)表于 2025-3-22 23:11:25 | 只看該作者
formula . Then lim ω(t)=φ..Suppose .. is the space L.(X), for some measure space X. It is reasonable to ask when ω(t) converges to φ pointwise almost everywhere. We show that if |H|.φ is in L.(X) for some α in (1/2,+∞), then pointwise convergence is verified..To motivate our work, consider the foll
9#
發(fā)表于 2025-3-23 04:43:20 | 只看該作者
An Introduction to Deep Learning and Keras,lable frameworks for DL development. We will also take a closer look at the Keras ecosystem to understand why it is special and have a look at a sample code to understand how easy the framework is for developing DL models.
10#
發(fā)表于 2025-3-23 05:47:58 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 11:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
平定县| 双鸭山市| 洛阳市| 芮城县| 界首市| 集贤县| 苍梧县| 通渭县| 澄迈县| 丹棱县| 宁武县| 靖宇县| 四会市| 合川市| 福海县| 霍城县| 中超| 出国| 崇州市| 无棣县| 滨海县| 武强县| 伽师县| 华坪县| 永登县| 团风县| 榆社县| 罗甸县| 凤阳县| 陇川县| 阿鲁科尔沁旗| 精河县| 涡阳县| 西峡县| 临夏县| 湟中县| 海盐县| 孟州市| 商城县| 太和县| 仙居县|