找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Learn Corona SDK Game Development; Frank W. Zammetti Book 2013 Frank Zammetti 2013

[復(fù)制鏈接]
查看: 41585|回復(fù): 48
樓主
發(fā)表于 2025-3-21 18:49:16 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Learn Corona SDK Game Development
編輯Frank W. Zammetti
視頻videohttp://file.papertrans.cn/583/582574/582574.mp4
概述Start with an idea -- end at the App Store..Learn Corona SDK Game Development walks you through the entire Corona game development process.
圖書封面Titlebook: Learn Corona SDK Game Development;  Frank W. Zammetti Book 2013 Frank Zammetti 2013
描述Corona SDK is one of the most popular app and game mobile development platforms in the world, and .Learn Corona SDK Game Development. walks you through creating a full-featured Corona game from scratch to the App Store.. .You‘ll learn Lua basics (the foundation of Corona), how to add and manipulate graphics, and how to use controls like multitouch, accelerometer, and gyroscope. You‘ll also learn how to use Box2D (Corona physics under the hood), and how to add sound effects and music.. . As you‘re polishing your game, you‘ll also learn about ads, in-app purchases, and OpenFeint and Game Center integration. Finally, you‘ll learn the ins and outs of getting a game into the App Store or other app marketplaces. .Whether you‘re developing exclusively for iOS, or whether you‘re developing for Android or other platforms, .Learn Corona SDK Game Development. explains just what you need to launch your career as a mobile game developer.
出版日期Book 2013
版次1
doihttps://doi.org/10.1007/978-1-4302-5069-2
isbn_softcover978-1-4302-5068-5
isbn_ebook978-1-4302-5069-2
copyrightFrank Zammetti 2013
The information of publication is updating

書目名稱Learn Corona SDK Game Development影響因子(影響力)




書目名稱Learn Corona SDK Game Development影響因子(影響力)學(xué)科排名




書目名稱Learn Corona SDK Game Development網(wǎng)絡(luò)公開度




書目名稱Learn Corona SDK Game Development網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Learn Corona SDK Game Development被引頻次




書目名稱Learn Corona SDK Game Development被引頻次學(xué)科排名




書目名稱Learn Corona SDK Game Development年度引用




書目名稱Learn Corona SDK Game Development年度引用學(xué)科排名




書目名稱Learn Corona SDK Game Development讀者反饋




書目名稱Learn Corona SDK Game Development讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:11:23 | 只看該作者
Einstein’s special theory of relativity, the purpose of his new book is to introduce hyperbolic barycentric coordinates, another important concept to embed Euclidean geometry into hyperbolic geometry. It will be demonstrated that, in full analogy to classical mechanics where barycentric coordinates
板凳
發(fā)表于 2025-3-22 03:49:05 | 只看該作者
Frank W. Zammettitrary to general belief, Einstein’s relativistic mass meshesAfter A. Ungar had introduced vector algebra and Cartesian coordinates into hyperbolic geometry in his earlier books, along with novel applications in Einstein’s special theory of relativity, the purpose of his new book is to introduce hype
地板
發(fā)表于 2025-3-22 06:22:16 | 只看該作者
Frank W. Zammettitrary to general belief, Einstein’s relativistic mass meshesAfter A. Ungar had introduced vector algebra and Cartesian coordinates into hyperbolic geometry in his earlier books, along with novel applications in Einstein’s special theory of relativity, the purpose of his new book is to introduce hype
5#
發(fā)表于 2025-3-22 10:15:42 | 只看該作者
Einstein’s special theory of relativity, the purpose of his new book is to introduce hyperbolic barycentric coordinates, another important concept to embed Euclidean geometry into hyperbolic geometry. It will be demonstrated that, in full analogy to classical mechanics where barycentric coordinates
6#
發(fā)表于 2025-3-22 15:48:23 | 只看該作者
7#
發(fā)表于 2025-3-22 20:06:55 | 只看該作者
8#
發(fā)表于 2025-3-22 21:38:50 | 只看該作者
Frank W. Zammettiry activefield, not least because of the fascinating relations with complex algebraicand arithmetic geometry. Foundational works of Serge Lang and Paul A. Vojta,among others, resulted in precise conjectures regarding the interplay of theseresearch fields (e.g. existence of Zariski dense entire curve
9#
發(fā)表于 2025-3-23 03:18:45 | 只看該作者
10#
發(fā)表于 2025-3-23 07:01:24 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 18:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
波密县| 巩义市| 祁东县| 许昌县| 中西区| 盐源县| 永平县| 托里县| 侯马市| 莲花县| 伊通| 都匀市| 安远县| 抚宁县| 加查县| 大宁县| 邹城市| 梁山县| 天等县| 阿勒泰市| 吉安县| 米泉市| 福安市| 东莞市| 疏附县| 齐河县| 绥江县| 宣化县| 淅川县| 昂仁县| 平凉市| 新闻| 长海县| 林口县| 司法| 沙田区| 桂阳县| 攀枝花市| 淅川县| 霸州市| 富蕴县|