找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Lazy Learning; David W. Aha Book 1997 Springer Science+Business Media Dordrecht 1997 algorithms.case-based reasoning.classification.cognit

[復(fù)制鏈接]
樓主: 技巧
41#
發(fā)表于 2025-3-28 17:52:45 | 只看該作者
Editorial,er algorithms during training, they typically have greater storage requirements and often have higher computational costs when answering requests. For the first time, this distinction, and its implications, are the focus of a (quintuple) special issue; . has brought together 14 articles that review
42#
發(fā)表于 2025-3-28 22:20:45 | 只看該作者
Voting over Multiple Condensed Nearest Neighbors,te size, we use bootstrapping to generate smaller training sets over which we train the voters. When the training set is large, we partition it into smaller, mutually exclusive subsets and then train the voters. Simulation results on six datasets are reported with good results. We give a review of m
43#
發(fā)表于 2025-3-29 00:13:42 | 只看該作者
Tolerating Concept and Sampling Shift in Lazy Learning Using Prediction Error Context Switching,-learning algorithms to have good classification accuracy in conditions having a time-varying function mapping and input sampling distributions, while still maintaining their asymptotic classification accuracy in static tasks. PECS works by selecting and re-activating previously stored instances bas
44#
發(fā)表于 2025-3-29 03:37:48 | 只看該作者
The Racing Algorithm: Model Selection for Lazy Learners,sing leave-one-out cross validation is efficient. We use racing to select among various lazy learning algorithms and to find relevant features in applications ranging from robot juggling to lesion detection . MRI scans.
45#
發(fā)表于 2025-3-29 10:46:04 | 只看該作者
46#
發(fā)表于 2025-3-29 15:05:22 | 只看該作者
47#
發(fā)表于 2025-3-29 18:34:46 | 只看該作者
Lazy Acquisition of Place Knowledge,Previous researchers have studied evidence grids and place learning, but they have not combined these two powerful concepts, nor have they used systematic experimentation to evaluate their methods’ abilities.
48#
發(fā)表于 2025-3-29 19:43:51 | 只看該作者
49#
發(fā)表于 2025-3-30 01:40:49 | 只看該作者
50#
發(fā)表于 2025-3-30 05:01:44 | 只看該作者
IGTree: Using Trees for Compression and Classification in Lazy Learning Algorithms,dicate that IGTree is a useful algorithm for problems characterized by the availability of a large number of training instances described by symbolic features with sufficiently differing information gain values.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 12:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宜宾市| 淮阳县| 奉新县| 淮南市| 新密市| 大荔县| 兴文县| 疏附县| 邯郸市| 兴和县| 三河市| 阿勒泰市| 延川县| 华安县| 福安市| 汽车| 昌黎县| 广宗县| 华池县| 庄浪县| 习水县| 仙游县| 温泉县| 扬中市| 防城港市| 弋阳县| 堆龙德庆县| 海原县| 抚州市| 松潘县| 乌兰浩特市| 沧源| 丰县| 东阿县| 略阳县| 沽源县| 襄城县| 吴川市| 开阳县| 迁西县| 华阴市|