找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Laws of Chaos; Invariant Measures a Abraham Boyarsky,Pawe? Góra Book 19971st edition Springer Science+Business Media New York 1997 Generato

[復制鏈接]
查看: 17960|回復: 50
樓主
發(fā)表于 2025-3-21 17:53:42 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Laws of Chaos
副標題Invariant Measures a
編輯Abraham Boyarsky,Pawe? Góra
視頻videohttp://file.papertrans.cn/583/582116/582116.mp4
叢書名稱Probability and Its Applications
圖書封面Titlebook: Laws of Chaos; Invariant Measures a Abraham Boyarsky,Pawe? Góra Book 19971st edition Springer Science+Business Media New York 1997 Generato
描述A hundred years ago it became known that deterministic systems can exhibit very complex behavior. By proving that ordinary differential equations can exhibit strange behavior, Poincare undermined the founda- tions of Newtonian physics and opened a window to the modern theory of nonlinear dynamics and chaos. Although in the 1930s and 1940s strange behavior was observed in many physical systems, the notion that this phenomenon was inherent in deterministic systems was never suggested. Even with the powerful results of S. Smale in the 1960s, complicated be- havior of deterministic systems remained no more than a mathematical curiosity. Not until the late 1970s, with the advent of fast and cheap comput- ers, was it recognized that chaotic behavior was prevalent in almost all domains of science and technology. Smale horseshoes began appearing in many scientific fields. In 1971, the phrase ‘strange attractor‘ was coined to describe complicated long-term behavior of deterministic systems, and the term quickly became a paradigm of nonlinear dynamics. The tools needed to study chaotic phenomena are entirely different from those used to study periodic or quasi-periodic systems; these tools a
出版日期Book 19971st edition
關鍵詞Generator; Maxima; Notation; Power; Rang; Variation; analysis; dynamical systems; ergodic theory; ergodicity;
版次1
doihttps://doi.org/10.1007/978-1-4612-2024-4
isbn_softcover978-1-4612-7386-8
isbn_ebook978-1-4612-2024-4Series ISSN 2297-0371 Series E-ISSN 2297-0398
issn_series 2297-0371
copyrightSpringer Science+Business Media New York 1997
The information of publication is updating

書目名稱Laws of Chaos影響因子(影響力)




書目名稱Laws of Chaos影響因子(影響力)學科排名




書目名稱Laws of Chaos網(wǎng)絡公開度




書目名稱Laws of Chaos網(wǎng)絡公開度學科排名




書目名稱Laws of Chaos被引頻次




書目名稱Laws of Chaos被引頻次學科排名




書目名稱Laws of Chaos年度引用




書目名稱Laws of Chaos年度引用學科排名




書目名稱Laws of Chaos讀者反饋




書目名稱Laws of Chaos讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 20:38:47 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:13:42 | 只看該作者
地板
發(fā)表于 2025-3-22 05:15:30 | 只看該作者
5#
發(fā)表于 2025-3-22 11:43:05 | 只看該作者
Abraham Boyarsky,Pawe? Góral entities. Yet I would argue that this apparent drawback is fundamental to the purpose of the book, which is to present a syncretistic doctrine of fictional entities. In other words, it is a theory which firmly acknowledges that the various other theories already developed on this subject have grea
6#
發(fā)表于 2025-3-22 15:14:34 | 只看該作者
7#
發(fā)表于 2025-3-22 17:40:22 | 只看該作者
Book 19971st editionrange attractor‘ was coined to describe complicated long-term behavior of deterministic systems, and the term quickly became a paradigm of nonlinear dynamics. The tools needed to study chaotic phenomena are entirely different from those used to study periodic or quasi-periodic systems; these tools a
8#
發(fā)表于 2025-3-23 00:52:29 | 只看該作者
2297-0371 onlinear dynamics. The tools needed to study chaotic phenomena are entirely different from those used to study periodic or quasi-periodic systems; these tools a978-1-4612-7386-8978-1-4612-2024-4Series ISSN 2297-0371 Series E-ISSN 2297-0398
9#
發(fā)表于 2025-3-23 02:26:28 | 只看該作者
10#
發(fā)表于 2025-3-23 06:35:18 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 16:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
丹寨县| 通州市| 永安市| 黎城县| 化德县| 临江市| 东乡族自治县| 邹城市| 曲松县| 和田县| 怀柔区| 阳曲县| 乌拉特后旗| 尉氏县| 宜州市| 昆明市| 恭城| 华蓥市| 九江市| 晋中市| 广元市| 杨浦区| 蒙自县| 肥城市| 平南县| 吉林市| 樟树市| 永昌县| 新建县| 靖西县| 宁蒗| 辉南县| 桦甸市| 永定县| 鄱阳县| 崇州市| 铜梁县| 珠海市| 班戈县| 渝中区| 廉江市|