找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Laurent Series and their Padé Approximations; Adhemar Bultheel Book 1987 Springer Basel AG 1987 Finite.Matrix.Meromorphic function.algorit

[復制鏈接]
樓主: 作業(yè)
31#
發(fā)表于 2025-3-26 21:14:34 | 只看該作者
0255-0156 t Pade approximation problem can be solved. In that case, two series are approximated, one is a power series in z and the other is a power series in z-l. So we can approximate two, not necessarily different functions one at zero and the other at infinity.978-3-0348-9988-8978-3-0348-9306-0Series ISSN 0255-0156 Series E-ISSN 2296-4878
32#
發(fā)表于 2025-3-27 05:01:53 | 只看該作者
33#
發(fā)表于 2025-3-27 08:06:30 | 只看該作者
34#
發(fā)表于 2025-3-27 10:00:34 | 只看該作者
35#
發(fā)表于 2025-3-27 16:18:13 | 只看該作者
Determination of poles, complicated situation occurs where Rutishauser polynomials are needed. Again, when . goes to ± ∞, these Rutishauser polynomials will converge to some polynomials whose zeros give a number of the poles of the given meromorphic function. This generalizes the results of theorem 13.1. Similar results for zeros will be derived in the next chapter.
36#
發(fā)表于 2025-3-27 21:23:27 | 只看該作者
37#
發(fā)表于 2025-3-28 00:13:58 | 只看該作者
38#
發(fā)表于 2025-3-28 05:16:08 | 只看該作者
Two algorithms,n the Padé table. The algorithms are well known methods for the solution of Toeplitz systems [TRE1], [ZOH1] and are related to the methods of Levinson and Schur known in digital filtering theory. Much information on these algorithms and many related ones can be found in a thesis by D.R.Sweet [SWE].
39#
發(fā)表于 2025-3-28 09:08:53 | 只看該作者
40#
發(fā)表于 2025-3-28 12:49:59 | 只看該作者
Determinant expressions and matrix interpretations,thms 1 and 2. In subsequent chapters we gave interpretations in terms of Padé approximants, continued fractions, Moebius transforms and orthogonal polynomials. In this chapter we shall come back to the linear algebra and show how the previous results may be interpreted in this environment.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 18:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
师宗县| 平陆县| 徐闻县| 柳河县| 海口市| 惠安县| 石台县| 囊谦县| 电白县| 丰顺县| 胶南市| 增城市| 安多县| 泊头市| 内丘县| 通化市| 彭阳县| 瑞丽市| 拜城县| 乳山市| 屏东市| 宝鸡市| 水城县| 神农架林区| 永春县| 灵宝市| 嘉义市| 光山县| 陕西省| 任丘市| 腾冲县| 老河口市| 浦东新区| 城步| 长海县| 平武县| 饶河县| 毕节市| 施甸县| 香港| 罗定市|