找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Lattices and Codes; A Course Partially B Wolfgang Ebeling Textbook 20022nd edition Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschw

[復(fù)制鏈接]
查看: 53519|回復(fù): 36
樓主
發(fā)表于 2025-3-21 16:41:03 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Lattices and Codes
副標(biāo)題A Course Partially B
編輯Wolfgang Ebeling
視頻videohttp://file.papertrans.cn/582/581955/581955.mp4
概述Modern Aspects in the Design of Codes
叢書名稱Advanced Lectures in Mathematics
圖書封面Titlebook: Lattices and Codes; A Course Partially B Wolfgang Ebeling Textbook 20022nd edition Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschw
描述The purpose of coding theory is the design of efficient systems for the transmission of information. The mathematical treatment leads to certain finite structures: the error-correcting codes. Surprisingly problems which are interesting for the design of codes turn out to be closely related to problems studied partly earlier and independently in pure mathematics. This book is about an example of such a connection: the relation between codes and lattices. Lattices are studied in number theory and in the geometry of numbers. Many problems about codes have their counterpart in problems about lattices and sphere packings. We give a detailed introduction to these relations including recent results of G. van der Geer and F. Hirzebruch. Let us explain the history of this book. In [LPS82] J. S. Leon, V. Pless, and N. J. A. Sloane considered the Lee weight enumerators of self-dual codes over the prime field of characteristic 5. They wrote in the introduction to their paper: "The weight enumerator of anyone of the codes . . . is strongly constrained: it must be invariant under a three-dimensional representation of the icosahedral group. These invariants were already known to Felix Klein, and
出版日期Textbook 20022nd edition
關(guān)鍵詞Codierungstheorie; Even Unimodular Lattices; Leech Lattice; Number theory; algebra; coding theory
版次2
doihttps://doi.org/10.1007/978-3-322-90014-2
isbn_ebook978-3-322-90014-2Series ISSN 0932-7134 Series E-ISSN 2512-7039
issn_series 0932-7134
copyrightFriedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig/Wiesbaden 2002
The information of publication is updating

書目名稱Lattices and Codes影響因子(影響力)




書目名稱Lattices and Codes影響因子(影響力)學(xué)科排名




書目名稱Lattices and Codes網(wǎng)絡(luò)公開度




書目名稱Lattices and Codes網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Lattices and Codes被引頻次




書目名稱Lattices and Codes被引頻次學(xué)科排名




書目名稱Lattices and Codes年度引用




書目名稱Lattices and Codes年度引用學(xué)科排名




書目名稱Lattices and Codes讀者反饋




書目名稱Lattices and Codes讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:43:57 | 只看該作者
Theta Functions and Weight Enumerators,Let Γ ? ?. be a lattice. We associate to Γ a function which is defined on the upper half plane ..
板凳
發(fā)表于 2025-3-22 03:13:57 | 只看該作者
地板
發(fā)表于 2025-3-22 07:00:03 | 只看該作者
5#
發(fā)表于 2025-3-22 11:13:00 | 只看該作者
https://doi.org/10.1007/978-3-322-90014-2Codierungstheorie; Even Unimodular Lattices; Leech Lattice; Number theory; algebra; coding theory
6#
發(fā)表于 2025-3-22 16:02:38 | 只看該作者
7#
發(fā)表于 2025-3-22 17:06:34 | 只看該作者
Lattices and Codes978-3-322-90014-2Series ISSN 0932-7134 Series E-ISSN 2512-7039
8#
發(fā)表于 2025-3-22 21:40:35 | 只看該作者
Wolfgang EbelingModern Aspects in the Design of Codes
9#
發(fā)表于 2025-3-23 03:17:25 | 只看該作者
10#
發(fā)表于 2025-3-23 07:28:16 | 只看該作者
Lattices over Integers of Number Fields and Self-Dual Codes, integers of a cyclotomic field to a code over ?.. In this section we shall study lattices over integers of cyclotomic fields. For the background on algebraic number theory see also [Sam67] and [ST87].
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 03:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阿勒泰市| 崇阳县| 石狮市| 广昌县| 天长市| 涿州市| 孝昌县| 晴隆县| 屏东市| 宜良县| 岳阳县| 康保县| 澄迈县| 津南区| 峨眉山市| 辉县市| 大荔县| 平度市| 固原市| 鄂尔多斯市| 芦溪县| 正定县| 榕江县| 柳林县| 东明县| 澄迈县| 甘洛县| 本溪市| 浠水县| 山东省| 桑植县| 武定县| 柏乡县| 嵊泗县| 新泰市| 鱼台县| 曲松县| SHOW| 大宁县| 建瓯市| 镇远县|