找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Lattice Theory: Special Topics and Applications; Volume 1 George Gr?tzer,Friedrich Wehrung Book 2014 Springer International Publishing Swit

[復(fù)制鏈接]
查看: 16341|回復(fù): 48
樓主
發(fā)表于 2025-3-21 16:36:00 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Lattice Theory: Special Topics and Applications
副標題Volume 1
編輯George Gr?tzer,Friedrich Wehrung
視頻videohttp://file.papertrans.cn/582/581946/581946.mp4
概述Standard reference work for researchers in this area.First supplementary volume to the revised and enlarged third edition of General Lattice Theory (Lattice Theory: Foundations).Together with Foundati
圖書封面Titlebook: Lattice Theory: Special Topics and Applications; Volume 1 George Gr?tzer,Friedrich Wehrung Book 2014 Springer International Publishing Swit
描述George Gr?tzer‘s. Lattice Theory: Foundation. is his third book on lattice theory (.General Lattice Theory., 1978, second edition, 1998). In 2009, Gr?tzer considered updating the second edition to reflect some exciting and deep developments. He soon realized that to lay the foundation, to survey the contemporary field, to pose research problems, would require more than one volume and more than one person. So .Lattice Theory: Foundation. provided the foundation. Now we complete this project with .Lattice Theory: Special Topics and Applications., written by a distinguished group of experts, to cover some of the vast areas not in Foundation. This first volume is divided into three parts. Part I. Topology and Lattices includes two chapters by Klaus Keimel, Jimmie Lawson and Ales Pultr, Jiri Sichler. Part II. Special Classes of Finite Lattices comprises four chapters by Gabor Czedli, George Gr?tzer and Joseph P. S. Kung. Part III. Congruence Lattices of Infinite Lattices and Beyond includes four chapters by Friedrich Wehrung and George Gr?tzer.
出版日期Book 2014
關(guān)鍵詞combinatorics; congruence lattice; finite lattice; lattice theory; topology
版次1
doihttps://doi.org/10.1007/978-3-319-06413-0
isbn_softcover978-3-319-06412-3
isbn_ebook978-3-319-06413-0
copyrightSpringer International Publishing Switzerland 2014
The information of publication is updating

書目名稱Lattice Theory: Special Topics and Applications影響因子(影響力)




書目名稱Lattice Theory: Special Topics and Applications影響因子(影響力)學(xué)科排名




書目名稱Lattice Theory: Special Topics and Applications網(wǎng)絡(luò)公開度




書目名稱Lattice Theory: Special Topics and Applications網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Lattice Theory: Special Topics and Applications被引頻次




書目名稱Lattice Theory: Special Topics and Applications被引頻次學(xué)科排名




書目名稱Lattice Theory: Special Topics and Applications年度引用




書目名稱Lattice Theory: Special Topics and Applications年度引用學(xué)科排名




書目名稱Lattice Theory: Special Topics and Applications讀者反饋




書目名稱Lattice Theory: Special Topics and Applications讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:12:16 | 只看該作者
Planar Semimodular Lattices: Structure and Diagramsstudy of . lattices began only in 2007 (G. Gr?tzer and E. Knapp [140]–[144] and G. Gr?tzer and T. Wares [182]). This was followed by G. Czédli and E.T. Schmidt [55]–[57], and G. Czédli [44]. This chapter presents an overview of these papers.
板凳
發(fā)表于 2025-3-22 03:14:15 | 只看該作者
地板
發(fā)表于 2025-3-22 08:34:21 | 只看該作者
http://image.papertrans.cn/l/image/581946.jpg
5#
發(fā)表于 2025-3-22 12:47:40 | 只看該作者
https://doi.org/10.1007/978-3-319-06413-0combinatorics; congruence lattice; finite lattice; lattice theory; topology
6#
發(fā)表于 2025-3-22 13:49:08 | 只看該作者
Frames: Topology Without PointsIn classical (synthetic) geometry, lines and planes are not sets of points. They are entities in their own right, and the geometry is based on relations between them (and points, the other entities present). It is only in analytic geometry that one starts with a set and imposes on it the geometric structure by defining specific subsets.
7#
發(fā)表于 2025-3-22 20:34:14 | 只看該作者
8#
發(fā)表于 2025-3-22 21:24:18 | 只看該作者
9#
發(fā)表于 2025-3-23 02:14:20 | 只看該作者
Combinatorics in finite latticesCombinatorial or counting problems in lattices were asked as soon as lattices were discovered. In one of the founding papers of lattice theory, [62], Richard Dedekind asked for the number of elements in the free distributive lattice with . generators.
10#
發(fā)表于 2025-3-23 07:41:29 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 10:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
博湖县| 嘉峪关市| 茂名市| 盘锦市| 都兰县| 时尚| 随州市| 湖南省| 舞钢市| 芜湖县| 龙岩市| 芜湖县| 乳山市| 新安县| 印江| 汶上县| 阿巴嘎旗| 诏安县| 文昌市| 资中县| 内黄县| 惠东县| 锡林浩特市| 健康| 德令哈市| 汉寿县| 姜堰市| 云林县| 通海县| 东至县| 贵州省| 基隆市| 江孜县| 长寿区| 宣汉县| 休宁县| 伊通| 宁城县| 建平县| 桐梓县| 吴桥县|