找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Lattice Rules; Numerical Integratio Josef Dick,Peter Kritzer,Friedrich Pillichshammer Book 2022 The Editor(s) (if applicable) and The Autho

[復制鏈接]
樓主: 去是公開
41#
發(fā)表于 2025-3-28 18:08:12 | 只看該作者
42#
發(fā)表于 2025-3-28 19:07:25 | 只看該作者
43#
發(fā)表于 2025-3-28 23:11:13 | 只看該作者
Lattice Rules in the Randomized Setting, We present a randomized algorithm . for numerical integration of elements of the weighted Korobov space . that uses at most . integration nodes and that is based on rank-1 lattice rules as building blocks.
44#
發(fā)表于 2025-3-29 05:05:21 | 只看該作者
Stability of Lattice Rules, it for a space with different parameters? Do we still get a fast rate of convergence? In other words, we ask whether lattice rules are stable with respect to a change of parameters. In the following we provide some results in this direction.
45#
發(fā)表于 2025-3-29 08:01:19 | 只看該作者
,,,, functions in the Korobov space in the .-norm. Obviously, .-approximation is in general a much more difficult task than .-approximation, so it is, a priori, not clear whether lattice rules can help also in the more demanding .-case. This is an interesting problem, and there are several results showi
46#
發(fā)表于 2025-3-29 11:45:19 | 只看該作者
Multiple Rank-1 Lattice Point Sets,proximation than when using ordinary rank-1 lattice point sets (see Chapters .and.). The basic idea of multiple lattice point sets is to consider the “union” of several rank-1 lattice point sets and to use them suitably in an approximation algorithm. In order to find good multiple lattice point sets
47#
發(fā)表于 2025-3-29 16:08:48 | 只看該作者
48#
發(fā)表于 2025-3-29 22:45:15 | 只看該作者
49#
發(fā)表于 2025-3-30 00:19:15 | 只看該作者
50#
發(fā)表于 2025-3-30 06:42:41 | 只看該作者
Josef Dick,Peter Kritzer,Friedrich Pillichshammermerika; diese Baumriesen erreichen ein Alter von zirka 500 Jahren, eine H?he bis 380 Fu? engl., einen Durchmesser bis 15 Fu? engl., und einige haben einen Kubikinhalt von 142 cbm aufgewiesen. In gewissen Gegenden erreichen ganze Waldungen eine Durchschnittsh?he von 250 Fu? und der Durchschnittsdurch
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 12:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
和龙市| 兴城市| 什邡市| 白城市| 怀安县| 南丰县| 巴南区| 洛宁县| 略阳县| 麟游县| 亚东县| 渝北区| 涿州市| 威宁| 防城港市| 皋兰县| 巴彦淖尔市| 仙桃市| 明星| 和静县| 大足县| 枣强县| 江城| 霍城县| 淮北市| 武宣县| 珲春市| 通榆县| 林甸县| 蓬莱市| 璧山县| 武胜县| 南投县| 齐齐哈尔市| 株洲县| 安乡县| 五河县| 乐平市| 仙游县| 长岛县| 潍坊市|