找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Lattice Path Combinatorics and Applications; George E. Andrews,Christian Krattenthaler,Alan Kri Book 2019 Springer Nature Switzerland AG 2

[復(fù)制鏈接]
樓主: Croching
21#
發(fā)表于 2025-3-25 03:40:01 | 只看該作者
22#
發(fā)表于 2025-3-25 07:59:29 | 只看該作者
23#
發(fā)表于 2025-3-25 15:31:54 | 只看該作者
Asymptotic Behaviour of Certain ,-Poisson, ,-Binomial and Negative ,-Binomial Distributions,med continuous Stieltjes–Wigert distribution and that of the Euler distribution to a deformed Gaussian distribution are established. Note that the Heine distribution is the limiting behaviour of both the .-binomial distribution of the first kind (.-Binomial?I) and the negative .-binomial distributio
24#
發(fā)表于 2025-3-25 17:15:46 | 只看該作者
25#
發(fā)表于 2025-3-25 20:50:57 | 只看該作者
26#
發(fā)表于 2025-3-26 00:50:43 | 只看該作者
27#
發(fā)表于 2025-3-26 06:30:57 | 只看該作者
Paired Patterns in Lattice Paths,ll words . with . .’s and . .’s. Given . and a subset . of ., we let . denote the word that results from . by removing the . occurrence of . and the . occurrence of . in . for all ., reading from left to right. Then, we say that a paired pattern . occurs in . if there is some . of size . such that .
28#
發(fā)表于 2025-3-26 08:28:26 | 只看該作者
29#
發(fā)表于 2025-3-26 12:46:35 | 只看該作者
Explicit Formulas for Enumeration of Lattice Paths: Basketball and the Kernel Method,d kernel method, leads to explicit formulas for the number of walks of length ., for any ., in terms of nested sums of binomials. We finally relate some special cases to other combinatorial problems, or to problems arising in queuing theory.
30#
發(fā)表于 2025-3-26 20:11:12 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 02:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
灵台县| 盘山县| 宾阳县| 东兴市| 义马市| 乐东| 车致| 墨玉县| 措美县| 嘉祥县| 怀仁县| 施秉县| 武乡县| 乌拉特后旗| 当雄县| 衡山县| 潞西市| 沾化县| 磴口县| 榆树市| 苗栗市| 宣恩县| 巴里| 康马县| 罗江县| 岳西县| 定西市| 寿光市| 隆德县| 磐石市| 安徽省| 额敏县| 水富县| 新郑市| 中牟县| 乐陵市| 宣恩县| 临桂县| 桂东县| 宜君县| 通州区|