找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Lattice Path Combinatorics and Applications; George E. Andrews,Christian Krattenthaler,Alan Kri Book 2019 Springer Nature Switzerland AG 2

[復(fù)制鏈接]
樓主: Croching
21#
發(fā)表于 2025-3-25 03:40:01 | 只看該作者
22#
發(fā)表于 2025-3-25 07:59:29 | 只看該作者
23#
發(fā)表于 2025-3-25 15:31:54 | 只看該作者
Asymptotic Behaviour of Certain ,-Poisson, ,-Binomial and Negative ,-Binomial Distributions,med continuous Stieltjes–Wigert distribution and that of the Euler distribution to a deformed Gaussian distribution are established. Note that the Heine distribution is the limiting behaviour of both the .-binomial distribution of the first kind (.-Binomial?I) and the negative .-binomial distributio
24#
發(fā)表于 2025-3-25 17:15:46 | 只看該作者
25#
發(fā)表于 2025-3-25 20:50:57 | 只看該作者
26#
發(fā)表于 2025-3-26 00:50:43 | 只看該作者
27#
發(fā)表于 2025-3-26 06:30:57 | 只看該作者
Paired Patterns in Lattice Paths,ll words . with . .’s and . .’s. Given . and a subset . of ., we let . denote the word that results from . by removing the . occurrence of . and the . occurrence of . in . for all ., reading from left to right. Then, we say that a paired pattern . occurs in . if there is some . of size . such that .
28#
發(fā)表于 2025-3-26 08:28:26 | 只看該作者
29#
發(fā)表于 2025-3-26 12:46:35 | 只看該作者
Explicit Formulas for Enumeration of Lattice Paths: Basketball and the Kernel Method,d kernel method, leads to explicit formulas for the number of walks of length ., for any ., in terms of nested sums of binomials. We finally relate some special cases to other combinatorial problems, or to problems arising in queuing theory.
30#
發(fā)表于 2025-3-26 20:11:12 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 02:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
陈巴尔虎旗| 内丘县| 武宁县| 龙岩市| 麦盖提县| 潍坊市| 彰化市| 项城市| 贡山| 彰武县| 普格县| 鄱阳县| 巩义市| 山东省| 绥阳县| 会同县| 开平市| 龙门县| 五峰| 苗栗市| 贵港市| 峡江县| 长丰县| 长海县| 揭东县| 马公市| 南开区| 措美县| 巢湖市| 卢龙县| 峨眉山市| 昆山市| 新和县| 隆回县| 乌苏市| 翁牛特旗| 南郑县| 芮城县| 湖州市| 深水埗区| 海口市|