找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Lattice Fermions and Structure of the Vacuum; V. Mitrjushkin,G. Schierholz Book 2000 Springer Science+Business Media Dordrecht 2000 Confin

[復(fù)制鏈接]
樓主: CRUST
21#
發(fā)表于 2025-3-25 04:14:39 | 只看該作者
22#
發(fā)表于 2025-3-25 08:32:25 | 只看該作者
Some Answered and Unanswered Questions about the Structure of the Set of Fermionic Actions with GWL became popular topics in lattice field theory. Most of these issues are not resolved to my satisfaction (if at all), which actually makes them an appropriate material to discuss at a workshop like this.
23#
發(fā)表于 2025-3-25 13:12:24 | 只看該作者
Regularization and Anomalies in Gauge Theory,in lattice gauge theory. The generalized Pauli-Villars regularization is discussed from a view point of the covariant regularization of currents, and the construction of a regularized effective action in terms of covariant currents is compared with the lattice formulation of chiral Abelian theory.
24#
發(fā)表于 2025-3-25 16:56:20 | 只看該作者
Chiral Symmetry Outside Perturbation Theory,ries. My main objective is to clear up an unhealthy confusion about how many successful approaches to regulate chiral fermions on the lattice there really are: At the moment, there is only one, the overlap, and finding a genuinely different approach is an important and completely open problem.
25#
發(fā)表于 2025-3-25 20:28:58 | 只看該作者
Abelian and Nonabelian Lattice Chiral Gauge Theories Through Gauge Fixing,ical evidence that abelian lattice chiral gauge theories can be nonperturbatively constructed through the gauge-fixing approach. In addition, we indicate how we believe that the method may be extended to nonabelian chiral gauge theories.
26#
發(fā)表于 2025-3-26 03:55:39 | 只看該作者
27#
發(fā)表于 2025-3-26 06:15:56 | 只看該作者
28#
發(fā)表于 2025-3-26 09:33:35 | 只看該作者
29#
發(fā)表于 2025-3-26 16:01:01 | 只看該作者
30#
發(fā)表于 2025-3-26 18:51:10 | 只看該作者
Better Domain-Wall Fermions,We discuss two modifications of domain-wall fermions, aimed to reduce the chiral-symmetry violations presently encountered in numerical simulations.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 05:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
威远县| 道真| 宕昌县| 泽库县| 东山县| 于都县| 曲沃县| 阿城市| 桑日县| 屏东县| 广元市| 沂源县| 犍为县| 迭部县| 永登县| 孟村| 巴南区| 遵义市| 米脂县| 华坪县| 西充县| 苏州市| 屏边| 昌都县| 辰溪县| 南召县| 军事| 水城县| 岱山县| 昌都县| 饶阳县| 无极县| 镇原县| 大埔县| 哈尔滨市| 新竹市| 峡江县| 南澳县| 左贡县| 皮山县| 磐安县|