找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Lattice Concepts of Module Theory; Grigore C?lug?reanu Book 2000 Springer Science+Business Media Dordrecht 2000 Group theory.Lattice.algeb

[復(fù)制鏈接]
樓主: Herbaceous
41#
發(fā)表于 2025-3-28 14:44:31 | 只看該作者
42#
發(fā)表于 2025-3-28 19:05:14 | 只看該作者
43#
發(fā)表于 2025-3-29 01:21:56 | 只看該作者
Socle. Torsion lattices,Let . be a lattice with zero.
44#
發(fā)表于 2025-3-29 04:02:22 | 只看該作者
Independence. Semiatomic lattices,A subset {..}. of non-zero elements of a complete lattice . (with 0) is called . if for every . the equality . holds. In this case we use the notation . and we call this join a ..
45#
發(fā)表于 2025-3-29 08:14:33 | 只看該作者
46#
發(fā)表于 2025-3-29 13:32:15 | 只看該作者
Lattices of finite uniform dimension,An element . is called . (or . [33]) if for every . the following implication holds: 0 < . ≤ ., 0 < . ≤ . ? . ≠ 0 (i.e., all non-zero elements from ./0 are essential in ./0).
47#
發(fā)表于 2025-3-29 18:42:04 | 只看該作者
48#
發(fā)表于 2025-3-29 23:07:25 | 只看該作者
Coatomic lattices,The interest in coatomic lattices goes back to H. Bass [2] (in 1960) who defined B-objects, i.e., modules . such that every submodule . is contained in a maximal submodule.
49#
發(fā)表于 2025-3-30 03:43:07 | 只看該作者
,Co—compact lattices,A complete lattice . is called . (or . in [34]) if for every subset . of . such that Λ . = 0 there is a finite subset . of . such that Λ . 0. Obviously, . is co—compact if and only if the dual L° is compact. An element a ∈ . is called . if the sublattice ./0 is co—compact.
50#
發(fā)表于 2025-3-30 04:22:26 | 只看該作者
Supplemented lattices. Locally artinian lattices,For the beginning we mention (a straightforward lattice version of [41]) some simple results about supplements and supplemented lattices.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 08:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
东海县| 商洛市| 瑞丽市| 武鸣县| 安徽省| 望江县| 邢台市| 科技| 铁岭市| 黄骅市| 平乡县| 普兰县| 修武县| 海门市| 乐亭县| 道孚县| 延津县| 沿河| 青海省| 冷水江市| 通许县| 民乐县| 湘阴县| 湾仔区| 揭东县| 收藏| 永定县| 马尔康县| 泰州市| 始兴县| 乐山市| 乌鲁木齐市| 蓬溪县| 城固县| 崇明县| 黄梅县| 武鸣县| 徐闻县| 津市市| 长垣县| 万安县|