找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Large-Scale Annotation of Biomedical Data and Expert Label Synthesis and Hardware Aware Learning for; International Worksh Luping Zhou,Nich

[復(fù)制鏈接]
查看: 35572|回復(fù): 58
樓主
發(fā)表于 2025-3-21 16:26:24 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Large-Scale Annotation of Biomedical Data and Expert Label Synthesis and Hardware Aware Learning for
副標(biāo)題International Worksh
編輯Luping Zhou,Nicholas Heller,Ingerid Reinertsen
視頻videohttp://file.papertrans.cn/582/581378/581378.mp4
叢書(shū)名稱Lecture Notes in Computer Science
圖書(shū)封面Titlebook: Large-Scale Annotation of Biomedical Data and Expert Label Synthesis and Hardware Aware Learning for; International Worksh Luping Zhou,Nich
描述.This book constitutes the refereed joint proceedings of the 4th International Workshop on Large-Scale Annotation of Biomedical Data and Expert Label Synthesis, LABELS 2019, the First International Workshop on Hardware Aware Learning for Medical Imaging and Computer Assisted Intervention, HAL-MICCAI 2019, and the Second International Workshop on Correction of Brainshift with Intra-Operative Ultrasound, CuRIOUS 2019, held in conjunction with the 22nd International Conference on Medical Imaging and Computer-Assisted Intervention, MICCAI 2019, in Shenzhen, China, in October 2019...The 8 papers presented at LABELS 2019, the 5 papers presented at HAL-MICCAI 2019, and the 3 papers presented at CuRIOUS 2019 were carefully reviewed and selected from numerous submissions. The LABELS papers present a variety of approaches for dealing with a limited number of labels, from semi-supervised learning to crowdsourcing. The HAL-MICCAI papers cover a wide set of hardware applications inmedical problems, including medical image segmentation, electron tomography, pneumonia detection, etc. The CuRIOUS papers provide a snapshot of the current progress in the field through extended discussions and provid
出版日期Conference proceedings 2019
關(guān)鍵詞artificial intelligence; deep learning; hardware-aided diagnosis; hardware-assisted intervention; image
版次1
doihttps://doi.org/10.1007/978-3-030-33642-4
isbn_softcover978-3-030-33641-7
isbn_ebook978-3-030-33642-4Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer Nature Switzerland AG 2019
The information of publication is updating

書(shū)目名稱Large-Scale Annotation of Biomedical Data and Expert Label Synthesis and Hardware Aware Learning for影響因子(影響力)




書(shū)目名稱Large-Scale Annotation of Biomedical Data and Expert Label Synthesis and Hardware Aware Learning for影響因子(影響力)學(xué)科排名




書(shū)目名稱Large-Scale Annotation of Biomedical Data and Expert Label Synthesis and Hardware Aware Learning for網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Large-Scale Annotation of Biomedical Data and Expert Label Synthesis and Hardware Aware Learning for網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Large-Scale Annotation of Biomedical Data and Expert Label Synthesis and Hardware Aware Learning for被引頻次




書(shū)目名稱Large-Scale Annotation of Biomedical Data and Expert Label Synthesis and Hardware Aware Learning for被引頻次學(xué)科排名




書(shū)目名稱Large-Scale Annotation of Biomedical Data and Expert Label Synthesis and Hardware Aware Learning for年度引用




書(shū)目名稱Large-Scale Annotation of Biomedical Data and Expert Label Synthesis and Hardware Aware Learning for年度引用學(xué)科排名




書(shū)目名稱Large-Scale Annotation of Biomedical Data and Expert Label Synthesis and Hardware Aware Learning for讀者反饋




書(shū)目名稱Large-Scale Annotation of Biomedical Data and Expert Label Synthesis and Hardware Aware Learning for讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:32:06 | 只看該作者
Lecture Notes in Computer Sciencehttp://image.papertrans.cn/l/image/581378.jpg
板凳
發(fā)表于 2025-3-22 02:28:39 | 只看該作者
地板
發(fā)表于 2025-3-22 08:29:23 | 只看該作者
Large-Scale Annotation of Biomedical Data and Expert Label Synthesis and Hardware Aware Learning for978-3-030-33642-4Series ISSN 0302-9743 Series E-ISSN 1611-3349
5#
發(fā)表于 2025-3-22 08:44:49 | 只看該作者
6#
發(fā)表于 2025-3-22 16:33:25 | 只看該作者
Robust Registration of Statistical Shape Models for Unsupervised Pathology Annotationl pathologies in novel targets during model fitting. We achieve this using an EM algorithm: the E-step classifies surface points into pathological or healthy classes based on outliers in predicted correspondences, while the M-step performs probabilistic fitting of the statistical shape model to the
7#
發(fā)表于 2025-3-22 20:44:32 | 只看該作者
XiangyaDerm: A Clinical Image Dataset of Asian Race for Skin Disease Aided Diagnosisven endangers people’s lives. In this paper, we propose a large-scale, Asian-dominated dataset of skin diseases with bounding box labels, namely XiangyaDerm. It contains 107,565 clinical images, covering 541 types of skin diseases. Each image in this dataset is labeled by professional doctors. As fa
8#
發(fā)表于 2025-3-22 23:39:23 | 只看該作者
9#
發(fā)表于 2025-3-23 02:15:35 | 只看該作者
Weakly Supervised Segmentation from Extreme Pointstime-consuming and typically requires expert knowledge, especially in the medical domain. Here, we propose to use minimal user interaction in the form of extreme point clicks in order to train a segmentation model that can, in turn, be used to speed up the annotation of medical images. We use extrem
10#
發(fā)表于 2025-3-23 05:47:37 | 只看該作者
Exploring the Relationship Between Segmentation Uncertainty, Segmentation Performance and Inter-obserovements in diagnostics and patient care, especially after recent breakthroughs that have been triggered by deep learning. However, when integrating automatic tools into patient care, it is crucial to understand their limitations and to have means to assess their confidence for individual cases. Al
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 20:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
建瓯市| 合阳县| 阳山县| 万全县| 那坡县| 攀枝花市| 义乌市| 宝鸡市| 深水埗区| 衡山县| 道孚县| 垫江县| 遂川县| 克东县| 新晃| 古丈县| 淮滨县| 卫辉市| 龙南县| 介休市| 旬阳县| 青川县| 普安县| 乌鲁木齐市| 怀来县| 娄底市| 尼玛县| 青河县| 岳阳市| 徐州市| 光泽县| 临清市| 吴桥县| 吴川市| 鸡西市| 海安县| 洪雅县| 锦州市| 望江县| 万州区| 太湖县|