找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Large Deviations for Random Graphs; école d‘été de Proba Sourav Chatterjee Book 2017 Springer International Publishing AG 2017 Random graph

[復制鏈接]
樓主: lumbar-puncture
11#
發(fā)表于 2025-3-23 10:13:29 | 只看該作者
Basics of Graph Limit Theory,This chapter summarizes some basic results from graph limit theory. The only background assumed here is the list of results from the previous chapter.
12#
發(fā)表于 2025-3-23 14:10:13 | 只看該作者
13#
發(fā)表于 2025-3-23 19:07:28 | 只看該作者
Applications of Dense Graph Large Deviations,This chapter contains some simple applications of the large deviation principle for dense Erd?s–Rényi random graphs that was derived in the previous chapter. The abstract theory yields surprising phase transition phenomena when applied to concrete problems.
14#
發(fā)表于 2025-3-24 01:17:54 | 只看該作者
15#
發(fā)表于 2025-3-24 05:16:17 | 只看該作者
16#
發(fā)表于 2025-3-24 07:00:41 | 只看該作者
17#
發(fā)表于 2025-3-24 14:16:58 | 只看該作者
Exponential Random Graph Models,ere . = (..,?.,?..) is a vector of real parameters, ..,?..,?.,?.. are real-valued functions on ., and .(.) is the normalizing constant. Usually, .. are taken to be counts of various subgraphs, for example ..(.) = number of edges in ., ..(.) = number of triangles in ., etc. These are known as exponen
18#
發(fā)表于 2025-3-24 17:59:09 | 只看該作者
Large Deviations for Sparse Graphs,ior of sparse graphs. The goal of this chapter is to describe an alternative approach, called nonlinear large deviations, that allows us to prove similar results for sparse graphs. Nonlinear large deviation theory gives a way of getting quantitative error bounds in some of the large deviation theore
19#
發(fā)表于 2025-3-24 20:42:10 | 只看該作者
Book 2017ics, graph theory and classical large deviations theory are developed from scratch, making the text self-contained and doing away with the need to look up external references. Further, the book is written in a format and style that are accessible for beginning graduate students in mathematics and statistics..
20#
發(fā)表于 2025-3-25 02:33:43 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 16:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
兴业县| 嘉黎县| 宾川县| 合肥市| 南华县| 项城市| 兖州市| 秭归县| 蕲春县| 天长市| 神农架林区| 双辽市| 高清| 远安县| 咸阳市| 民县| 无为县| 永靖县| 墨脱县| 福安市| 阿合奇县| 南郑县| 台南市| 如皋市| 衡南县| 名山县| 七台河市| 伊通| 辽阳市| 龙南县| 五寨县| 洪湖市| 盐池县| 泰来县| 昌乐县| 武城县| 盐源县| 张家川| 浮山县| 义马市| 石棉县|