找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Large Deviations and Asymptotic Methods in Finance; Peter K. Friz,Jim Gatheral,Josef Teichmann Conference proceedings 2015 Springer Intern

[復制鏈接]
樓主: SORB
41#
發(fā)表于 2025-3-28 16:00:55 | 只看該作者
,A Remark on Gatheral’s ‘Most-Likely Path Approximation’ of Implied Volatility,We give a new proof of the representation of implied volatility as a time-average of weighted expectations of local or stochastic volatility. With this proof we clarify the question of existence of ‘forward implied variance’ in the original derivation of Gatheral, who introduced this representation in his book ‘The Volatility Surface’.
42#
發(fā)表于 2025-3-28 22:12:27 | 只看該作者
On Small Time Asymptotics for Rough Differential Equations Driven by Fractional Brownian Motions,We survey existing results concerning the study in small times of the density of the solution of a rough differential equation driven by fractional Brownian motions. We also slightly improve existing results and discuss some possible applications to mathematical finance.
43#
發(fā)表于 2025-3-29 02:54:52 | 只看該作者
On Singularities in the Heston Model,In this note we provide characterization of the singularities of the Heston characteristic function. In particular, we show that all the singularities are pure imaginary.
44#
發(fā)表于 2025-3-29 06:04:06 | 只看該作者
Small-Time Asymptotics for the At-the-Money Implied Volatility in a Multi-dimensional Local Volatil, [.]) derived highly accurate analytic formulas for prices and implied volatilities of such options when the options are not at the money. We now extend these results to the ATM case. Moreover, we also derive similar formulas for the local volatility of the basket.
45#
發(fā)表于 2025-3-29 08:14:04 | 只看該作者
,Extrapolation Analytics for Dupire’s Local Volatility,ses our approximation formula from a practical and numerical perspective, the present paper focuses on rigorous proofs of the approximations. We apply the saddle point method (Heston model) and Hankel contour integration (variance gamma model).
46#
發(fā)表于 2025-3-29 12:24:10 | 只看該作者
47#
發(fā)表于 2025-3-29 18:44:23 | 只看該作者
48#
發(fā)表于 2025-3-29 21:21:48 | 只看該作者
49#
發(fā)表于 2025-3-30 01:44:37 | 只看該作者
50#
發(fā)表于 2025-3-30 07:53:10 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-10 17:10
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
三台县| 屏东市| 峡江县| 哈密市| 砚山县| 石门县| 泽州县| 陆丰市| 临城县| 晋州市| 遵化市| 屯留县| 佛教| 贡山| 长武县| 三原县| 罗田县| 新郑市| 江山市| 高安市| 怀宁县| 界首市| 左贡县| 乐陵市| 朔州市| 滕州市| 北辰区| 余江县| 苗栗县| 砀山县| 临颍县| 习水县| 原平市| 盱眙县| 雷山县| 措美县| 建水县| 五家渠市| 玉门市| 高雄市| 雷波县|