找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Languages, Compilers, and Run-Time Systems for Scalable Computers; 4th International Wo David R. O’Hallaron Conference proceedings 1998 Spr

[復(fù)制鏈接]
樓主: Braggart
31#
發(fā)表于 2025-3-26 23:51:02 | 只看該作者
32#
發(fā)表于 2025-3-27 03:43:12 | 只看該作者
Evaluating the Effectiveness of a Parallelizing Compiler, Origin 2000. Based upon our experimental results and user experiences, we describe some desirable properties of the compilation technology and software tools that would be helpful to the applications community.
33#
發(fā)表于 2025-3-27 07:37:12 | 只看該作者
Comparing Reference Counting and Global Mark-and-Sweep on Parallel Computers,cally, it is bad when applications use deeply nested data structures such as distributed trees. 2) the cost of reference counting has a portion that is independent of the heap size while that of global mark-and-sweep does not. We confirmed these observations through experiments using three parallel applications.
34#
發(fā)表于 2025-3-27 11:38:32 | 只看該作者
Instrumentation Database for Performance Analysis of Parallel Scientific Applications, this approach influences the design of performance analysis components. We further motivate our approach with an example using a sparse matrix vector product code. We conclude by discussing some of the key implementation issues and outlining future plans.
35#
發(fā)表于 2025-3-27 14:45:20 | 只看該作者
Design of the GODIVA Performance Measurement System,ogram execution. This paper provides an overview of the system and discusses several of the most important and unique design decisions that differentiate Godiva from other performance measurement systems.
36#
發(fā)表于 2025-3-27 17:56:38 | 只看該作者
37#
發(fā)表于 2025-3-28 00:40:22 | 只看該作者
38#
發(fā)表于 2025-3-28 02:18:36 | 只看該作者
A Performance Prediction Framework for Data Intensive Applications on Large Scale Parallel Machinesy large scale configurations is a technique called . where the processing structure of the application is embedded in the simulator, while preserving data dependencies and data distributions. We evaluate our performance prediction tool using a set of three data-intensive applications.
39#
發(fā)表于 2025-3-28 07:07:50 | 只看該作者
40#
發(fā)表于 2025-3-28 11:28:45 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 10:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
平湖市| 平山县| 秦皇岛市| 大港区| 中阳县| 颍上县| 抚州市| 镇宁| 定西市| 南丰县| 楚雄市| 泸州市| 灵石县| 凯里市| 乌兰察布市| 忻城县| 仙桃市| 岳普湖县| 来宾市| 文化| 通州市| 汉中市| 怀来县| 青阳县| 鄄城县| 惠州市| 湟中县| 澜沧| 平凉市| 聂荣县| 布尔津县| 泰顺县| 卫辉市| 新疆| 长寿区| 平湖市| 钟山县| 宿州市| 岚皋县| 宜阳县| 嘉善县|