找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

123456
返回列表
打印 上一主題 下一主題

Titlebook: Language, Logic, and Mathematics in Schopenhauer; Jens Lemanski Book 2020 Springer Nature Switzerland AG 2020 History of Mathematics.Philo

[復(fù)制鏈接]
樓主: 照相機(jī)
51#
發(fā)表于 2025-3-30 11:26:22 | 只看該作者
Schopenhauer’s Perceptive Invectiveful consideration: they are rooted in Schopenhauer’s philosophy of language, which itself reflects the structure of his metaphysics. This short chapter argues that Schopenhauer’s vitriol rewards philosophical attention; not because it expresses his critical take on Fichte, Hegel, Herbart, Schelling,
52#
發(fā)表于 2025-3-30 16:18:59 | 只看該作者
Schopenhauer’s Eulerian Diagramsams in his Berlin Lectures that have not been published until 1913. These works are seldom mentioned in logic diagrams literature. This paper surveys and assesses Schopenhauer’s diagrams and the extent to which they conform to the scholarship of his time. It is shown that Schopenhauer adopted a sche
53#
發(fā)表于 2025-3-30 18:23:58 | 只看該作者
54#
發(fā)表于 2025-3-30 22:20:07 | 只看該作者
Arthur Schopenhauer on Naturalness in Logicion is intensively discussed on the basis of Aristotelian syllogistics. On the other hand, research on “natural logic” is concerned with the implicitly existing logical laws of natural language, and is therefore also interested in the naturalness of syllogistics. In both research areas, the question
55#
發(fā)表于 2025-3-31 04:16:25 | 只看該作者
Schopenhauer and the Equational Form of Predicationhauer invokes an equation sign to express relations of predication as in “A = B”. The present paper proposes an assessment of Schopenhauer’s use of the equation sign. Departing from an analysis of Schopenhauer’s account of concepts and judgments, it offers a survey of logic textbooks which Schopenha
56#
發(fā)表于 2025-3-31 06:52:52 | 只看該作者
From Euler Diagrams in Schopenhauer to Aristotelian Diagrams in Logical Geometryometry. One can define the Aristotelian relations in a very general fashion (relative to arbitrary Boolean algebras), which allows us to define not only Aristotelian diagrams for ., but also for .. I show that, once this generalization has been made, each of Schopenhauer’s concrete Euler diagrams ca
123456
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 09:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阿拉尔市| 张家港市| 凤台县| 吉林市| 宁晋县| 博湖县| 玉林市| 讷河市| 山阴县| 贵阳市| 兴义市| 阿克陶县| 新安县| 平利县| 涞水县| 长丰县| 三门峡市| 视频| 五原县| 周口市| 佛教| 庄河市| 宝清县| 托里县| 桃源县| 云梦县| 青浦区| 湖州市| 唐海县| 棋牌| 祁阳县| 桦甸市| 平凉市| 丹寨县| 天台县| 张掖市| 鹤山市| 阿克陶县| 汝南县| 灵武市| 西平县|