找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Language Identification Using Excitation Source Features; K. Sreenivasa Rao,Dipanjan Nandi Book 2015 The Author(s) 2015 Anguage Identifica

[復(fù)制鏈接]
查看: 54480|回復(fù): 36
樓主
發(fā)表于 2025-3-21 18:45:43 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Language Identification Using Excitation Source Features
編輯K. Sreenivasa Rao,Dipanjan Nandi
視頻videohttp://file.papertrans.cn/581/580927/580927.mp4
概述Discusses the excitation source component in the context of language identification, detailing how it can exploited for language discrimination in speech.Proposes robust signal processing methods for
叢書(shū)名稱SpringerBriefs in Speech Technology
圖書(shū)封面Titlebook: Language Identification Using Excitation Source Features;  K. Sreenivasa Rao,Dipanjan Nandi Book 2015 The Author(s) 2015 Anguage Identifica
描述This book discusses the contribution of excitation source information in discriminating language. The authors focus on the excitation source component of speech for enhancement of language identification (LID) performance. Language specific features are extracted using two different modes: (i) Implicit processing of linear prediction (LP) residual and (ii) Explicit parameterization of linear prediction residual. The book discusses how in implicit processing approach, excitation source features are derived from LP residual, Hilbert envelope (magnitude) of LP residual and Phase of LP residual; and in explicit parameterization approach, LP residual signal is processed in spectral domain to extract the relevant language specific features. The authors further extract source features from these modes, which are combined for enhancing the performance of LID systems. The proposed excitation source features are also investigated for LID in background noisy environments. Each chapter of this book provides the motivation for exploring the specific feature for LID task, and subsequently discuss the methods to extract those features and finally suggest appropriate models to capture the language
出版日期Book 2015
關(guān)鍵詞Anguage Identification; Combination of Spectral and Source Features; Implicit and Explicit Source Feat
版次1
doihttps://doi.org/10.1007/978-3-319-17725-0
isbn_softcover978-3-319-17724-3
isbn_ebook978-3-319-17725-0Series ISSN 2191-737X Series E-ISSN 2191-7388
issn_series 2191-737X
copyrightThe Author(s) 2015
The information of publication is updating

書(shū)目名稱Language Identification Using Excitation Source Features影響因子(影響力)




書(shū)目名稱Language Identification Using Excitation Source Features影響因子(影響力)學(xué)科排名




書(shū)目名稱Language Identification Using Excitation Source Features網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Language Identification Using Excitation Source Features網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Language Identification Using Excitation Source Features被引頻次




書(shū)目名稱Language Identification Using Excitation Source Features被引頻次學(xué)科排名




書(shū)目名稱Language Identification Using Excitation Source Features年度引用




書(shū)目名稱Language Identification Using Excitation Source Features年度引用學(xué)科排名




書(shū)目名稱Language Identification Using Excitation Source Features讀者反饋




書(shū)目名稱Language Identification Using Excitation Source Features讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:01:30 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:24:11 | 只看該作者
Complementary and Robust Nature of Excitation Source Features for Language Identification,ary nature of excitation source and vocal tract features is exploited for improving the LID accuracy. The robustness of proposed language-specific excitation source features is investigated on various noisy background environments.
地板
發(fā)表于 2025-3-22 05:38:10 | 只看該作者
5#
發(fā)表于 2025-3-22 09:10:43 | 只看該作者
6#
發(fā)表于 2025-3-22 16:03:58 | 只看該作者
Language Identification Using Excitation Source Features978-3-319-17725-0Series ISSN 2191-737X Series E-ISSN 2191-7388
7#
發(fā)表于 2025-3-22 18:37:26 | 只看該作者
8#
發(fā)表于 2025-3-22 22:58:53 | 只看該作者
9#
發(fā)表于 2025-3-23 03:33:04 | 只看該作者
10#
發(fā)表于 2025-3-23 06:22:10 | 只看該作者
Language Identification Using Excitation Source Features
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 05:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
山东| 新干县| 武平县| 辰溪县| 通化市| 贵定县| 石首市| 乌苏市| 凤庆县| 镇坪县| 澳门| 雷波县| 西乌珠穆沁旗| 铅山县| 旌德县| 长宁区| 冀州市| 游戏| 博乐市| 贺兰县| 婺源县| 和田县| 涞水县| 山西省| 吉木萨尔县| 瑞安市| 阿拉尔市| 苍南县| 邵阳市| 焦作市| 萝北县| 南充市| 游戏| 新乡市| 湾仔区| 蛟河市| 临武县| 疏勒县| 凉城县| 沈丘县| 屏山县|