找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Landscapes of Time-Frequency Analysis; ATFA 2019 Paolo Boggiatto,Tommaso Bruno,Maria Vallarino Book 2020 Springer Nature Switzerland AG 202

[復(fù)制鏈接]
樓主: 日月等
21#
發(fā)表于 2025-3-25 04:29:45 | 只看該作者
Applied and Numerical Harmonic Analysishttp://image.papertrans.cn/l/image/580775.jpg
22#
發(fā)表于 2025-3-25 08:24:44 | 只看該作者
23#
發(fā)表于 2025-3-25 15:12:13 | 只看該作者
Landscapes of Time-Frequency Analysis978-3-030-56005-8Series ISSN 2296-5009 Series E-ISSN 2296-5017
24#
發(fā)表于 2025-3-25 18:00:53 | 只看該作者
,Time–Frequency Localization Operators: State of the Art,about boundedness and Schatten-von Neumann class are reported. Asymptotic eigenvalues’ distribution and decay and smoothness properties for ..-eigenfunctions are exhibited. Eventually, we make a conjecture about smoothness of ..-eigenfunctions for localization operators with Gelfand–Shilov windows and symbols in ultra-modulation spaces.
25#
發(fā)表于 2025-3-25 23:42:32 | 只看該作者
Some Notes About Distribution Frame Multipliers,y of its main properties is carried on. In particular, conditions for the density of domain and boundedness are given. The case of Riesz distribution bases is examined in order to develop a symbolic calculus.
26#
發(fā)表于 2025-3-26 00:22:17 | 只看該作者
27#
發(fā)表于 2025-3-26 06:12:00 | 只看該作者
,A Time–Frequency Analysis Perspective on Feynman Path Integrals,ing the mathematical theory of Feynman path integrals. We hope to draw the interest of mathematicians working in time–frequency analysis on this topic, as well as to illustrate the benefits of this fruitful interplay for people working on path integrals.
28#
發(fā)表于 2025-3-26 10:34:58 | 只看該作者
29#
發(fā)表于 2025-3-26 14:19:03 | 只看該作者
Radon Transform: Dual Pairs and Irreducible Representations,s theory of dual .-homogeneous pairs (., .) and which allows us to prove intertwining properties and inversion formulae of many existing Radon transforms. Here we analyze in detail one of the important aspects in the theory of dual pairs, namely the injectivity of the map label-to-manifold . and we
30#
發(fā)表于 2025-3-26 19:50:30 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 17:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
利辛县| 库车县| 同江市| 尖扎县| 澄城县| 浦城县| 孝昌县| 新宁县| 中江县| 耿马| 鲜城| 江都市| 三河市| 永宁县| 庄河市| 萨迦县| 樟树市| 新乐市| 通渭县| 监利县| 长治市| 武义县| 贵定县| 东光县| 确山县| 临夏县| 辽源市| 乐山市| 赞皇县| 连云港市| 理塘县| 河西区| 建瓯市| 珠海市| 兴仁县| 丹寨县| 南部县| 崇义县| 河源市| 定安县| 吴旗县|