找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Lagerungen; Arrangements in the László Fejes Tóth,Gábor Fejes Tóth,W?odzimierz Kup Book 20231st edition The Editor(s) (if applicable) and

[復制鏈接]
樓主: INFER
41#
發(fā)表于 2025-3-28 15:27:01 | 只看該作者
Extremal Properties of Regular Polyhedrapolyhedra play a special role. However, since for example in the densest packing of 12 congruent circles on the sphere, their planes bound a regular dodecahedron, the same problems can be formulated so that the regular three-valent polyhedra play a special role.
42#
發(fā)表于 2025-3-28 19:22:39 | 只看該作者
43#
發(fā)表于 2025-3-29 02:52:31 | 只看該作者
44#
發(fā)表于 2025-3-29 04:42:49 | 只看該作者
Efficiency of Packings and Coverings with a Sequence of Convex Disksense we are interested in the opposite counterparts of the convex tiling domains. These problems appear to be quite difficult and thus far are still unsolved. In this chapter we try to take the first steps towards the solution. In Section 4.1, we solve the analogous problems for lattice-like arrangements.
45#
發(fā)表于 2025-3-29 07:50:24 | 只看該作者
Miscellaneous Problems About Packing and Coveringscribed. Which arrangement of the rectangles allows for the greatest number of houses in the area? By the inequality 3.10.1, the problem is reduced to the determination of the densest lattice packing of the parallel domain of the rectangle.
46#
發(fā)表于 2025-3-29 12:59:32 | 只看該作者
Problems on Packing and Covering in the PlaneThe problems of this chapter are either directly of this type, or are associated with these two central problems. Our main interest lies in the limit case, in which the number of the disks is infinite.
47#
發(fā)表于 2025-3-29 17:25:05 | 只看該作者
48#
發(fā)表于 2025-3-29 20:43:03 | 只看該作者
49#
發(fā)表于 2025-3-29 23:53:30 | 只看該作者
Ball Packings in Hyperbolic SpaceIt is natural to extend the study of packing and covering problems to the hyperbolic plane, as well as hyperbolic spaces of higher dimension. Research in that direction began essentially only after the original publication of this book. Research in dimensions higher than 2 was restricted to packings of balls.
50#
發(fā)表于 2025-3-30 05:52:27 | 只看該作者
Multiple ArrangementsThe literature on multiple packing and covering is relatively extensive, and it mostly deals with arrangements of congruent copies of the circular disk ..
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-12 02:06
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
交城县| 陈巴尔虎旗| 无为县| 改则县| 大连市| 商水县| 湘阴县| 新宾| 嘉鱼县| 德江县| 盐城市| 平阳县| 南安市| 奉新县| 马山县| 钟山县| 巴塘县| 遂宁市| 沐川县| 济阳县| 特克斯县| 象山县| 泰来县| 南部县| 七台河市| 仪陇县| 固始县| 阿荣旗| 宝鸡市| 万盛区| 馆陶县| 武穴市| 吉木乃县| 祁连县| 科技| 新龙县| 临城县| 黄骅市| 双鸭山市| 壤塘县| 长宁区|