找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Labour’s Renewal?; The Policy Review an Gerald R. Taylor Book 1997 Gerald R. Taylor 1997 assessment.economic policy.Electoral.Policy.reform

[復(fù)制鏈接]
查看: 7422|回復(fù): 40
樓主
發(fā)表于 2025-3-21 16:24:26 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Labour’s Renewal?
副標(biāo)題The Policy Review an
編輯Gerald R. Taylor
視頻videohttp://file.papertrans.cn/581/580384/580384.mp4
圖書封面Titlebook: Labour’s Renewal?; The Policy Review an Gerald R. Taylor Book 1997 Gerald R. Taylor 1997 assessment.economic policy.Electoral.Policy.reform
描述This is an important critical assessment of Labour‘s periods of renewal and modernisation. Beginning with an indepth analysis of the Policy Review of 1987-92, the author then considers how the lessons of this period influenced the Commission on Social Justice instigated by John Smith, and Tony Blair‘s reform of Clause IV. These events are considered as attempts to resolve traditional problems facing the Labour Party, the abiding legacy and importance of these fundamental problems is assessed.
出版日期Book 1997
關(guān)鍵詞assessment; economic policy; Electoral; Policy; reform; social justice; strategy; British Politics
版次1
doihttps://doi.org/10.1007/978-1-349-25397-5
isbn_softcover978-0-333-65248-0
isbn_ebook978-1-349-25397-5
copyrightGerald R. Taylor 1997
The information of publication is updating

書目名稱Labour’s Renewal?影響因子(影響力)




書目名稱Labour’s Renewal?影響因子(影響力)學(xué)科排名




書目名稱Labour’s Renewal?網(wǎng)絡(luò)公開度




書目名稱Labour’s Renewal?網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Labour’s Renewal?被引頻次




書目名稱Labour’s Renewal?被引頻次學(xué)科排名




書目名稱Labour’s Renewal?年度引用




書目名稱Labour’s Renewal?年度引用學(xué)科排名




書目名稱Labour’s Renewal?讀者反饋




書目名稱Labour’s Renewal?讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:00:35 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:52:51 | 只看該作者
provement of the algorithm performance with the novel Einstein t-norm, the selection of fuzzy tolerance relationship sometimes can have big differences on the final output model, and on some datasets, it did not have any influence whatsoever. For future work, we plan to conduct further investigation
地板
發(fā)表于 2025-3-22 08:23:27 | 只看該作者
Gerald R. Taylorodology for developing the text-to-speech engine relies on the newest and most efficient principles in Machine Learning for Natural Language Processing - a Deep Learning approach. The framework has been tested on target group of students and the satisfaction has been measured by using the standard L
5#
發(fā)表于 2025-3-22 09:50:14 | 只看該作者
6#
發(fā)表于 2025-3-22 14:35:04 | 只看該作者
Gerald R. Tayloren their cross-section is undertaken. The dataset is unbalanced concerning the records of both classes, therefore certain balancing techniques are applied. Several models are built using traditional Machine Learning models, classifiers with Deep Neural Networks and ensemble algorithms and their perf
7#
發(fā)表于 2025-3-22 17:42:16 | 只看該作者
Gerald R. Taylorprovement of the algorithm performance with the novel Einstein t-norm, the selection of fuzzy tolerance relationship sometimes can have big differences on the final output model, and on some datasets, it did not have any influence whatsoever. For future work, we plan to conduct further investigation
8#
發(fā)表于 2025-3-22 23:19:35 | 只看該作者
ne and symmetrized percent change of the volumetric measures, as well as the index of abnormality provided the best overall retrieval results. The dimensionality of the feature vector was 31–33 features in most of the cases which is significantly lower than in the case of the traditional approach (t
9#
發(fā)表于 2025-3-23 05:19:52 | 只看該作者
10#
發(fā)表于 2025-3-23 09:35:14 | 只看該作者
Gerald R. Taylororithms. To further strengthen the security, we implemented image encryption for this type of image steganography and analyzed the improvements, benefits, advantages, and disadvantages of this model in each phase of hiding/retrieving. Also, StegIm can detect hidden data in given images with the help
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 12:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
揭阳市| 礼泉县| 伊宁市| 九龙县| 新丰县| 双桥区| 尼木县| 西乌珠穆沁旗| 留坝县| 金溪县| 昂仁县| 蛟河市| 贵溪市| 镇远县| 广元市| 吉首市| 来凤县| 剑阁县| 宝应县| 仙桃市| 延寿县| 孝义市| 读书| 纳雍县| 禹城市| 大姚县| 鹤峰县| 湘西| 石首市| 阿鲁科尔沁旗| 乐亭县| 天门市| 金沙县| 顺义区| 蒙山县| 同心县| 定安县| 吐鲁番市| 新邵县| 平谷区| 迁西县|