找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: LATIN‘98: Theoretical Informatics; Third Latin American Cláudio L. Lucchesi,Arnaldo V. Moura Conference proceedings 1998 Springer-Verlag Be

[復制鏈接]
樓主: negation
21#
發(fā)表于 2025-3-25 12:59:28 | 只看該作者
22#
發(fā)表于 2025-3-25 19:42:16 | 只看該作者
23#
發(fā)表于 2025-3-25 22:12:19 | 只看該作者
24#
發(fā)表于 2025-3-26 02:22:45 | 只看該作者
Faster non-linear parametric search with applications to optimization and dynamic geometry,tion on weighted graphs and to two problems in dynamic geometry on points moving in straight-line trajectories: computing the minimum diameter over all time and finding the time at which the length of the maximum spanning tree is minimized.
25#
發(fā)表于 2025-3-26 06:38:28 | 只看該作者
26#
發(fā)表于 2025-3-26 11:52:16 | 只看該作者
An Eilenberg theorem for words on countable ordinals,emigroup, is an adaptation of the one used in the theory of regular languages of Ω-words. We show that finite Ω.-semigroups are equivalent to automata. In particular, the proof gives a new algorithm for determinizing automata on countable ordinals. As in the cases of finite and Ω-words, a syntactic
27#
發(fā)表于 2025-3-26 14:14:41 | 只看該作者
Maximal groups in free Burnside semigroups,tisfying . .=1. We show that such group is free over a well described set of generators whose cardinality is the cyclomatic number of a graph associated to the ?-class containing the group. For .=2 and for every . ≥ 2 we present examples with 2.?1 generators. Hence, in these cases, we have infinite
28#
發(fā)表于 2025-3-26 20:23:13 | 只看該作者
Positive varieties and infinite words, this paper, we extend this theory for classes of languages that are closed under union and intersection, but not necessarily under complement. As an example, we give a purely algebraic characterization of various classes of recognizable sets defined by topological properties (open, closed, . . and
29#
發(fā)表于 2025-3-26 22:10:25 | 只看該作者
30#
發(fā)表于 2025-3-27 03:05:37 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 18:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
永丰县| 青海省| 兴海县| 朝阳市| 襄垣县| 中阳县| 大庆市| 枞阳县| 雷州市| 敦化市| 左云县| 栾城县| 甘孜| 盈江县| 临安市| 塔河县| 米泉市| 米林县| 开平市| 安仁县| 肥城市| 南京市| 朝阳县| 龙川县| 上饶县| 鄂温| 嘉禾县| 托里县| 虎林市| 东莞市| 农安县| 盐边县| 杨浦区| 弥渡县| 昌邑市| 甘谷县| 兴化市| 都匀市| 茂名市| 贵州省| 阿鲁科尔沁旗|